Putative Microcircuit-Level Substrates for Attention Are Disrupted in Mouse Models of Autism

  • Francisco J. Luongo
    Department of Psychiatry (FL, VSS), University of California, San Francisco, San Francisco, California.

    Center for Integrative Neuroscience (FL, VSS), University of California, San Francisco, San Francisco, California.

    Sloan-Swartz Center for Theoretical Neurobiology (FL, VSS), University of California, San Francisco, San Francisco, California.

    Neuroscience Graduate Program (FL, MH), University of California, San Francisco, San Francisco, California.
    Search for articles by this author
  • Meryl E. Horn
    Neuroscience Graduate Program (FL, MH), University of California, San Francisco, San Francisco, California.
    Search for articles by this author
  • Vikaas S. Sohal
    Address correspondence to Vikaas S. Sohal, Department of Psychiatry, 675 Nelson Rising Ln, San Francisco, CA 94143-0444.
    Department of Psychiatry (FL, VSS), University of California, San Francisco, San Francisco, California.

    Center for Integrative Neuroscience (FL, VSS), University of California, San Francisco, San Francisco, California.

    Sloan-Swartz Center for Theoretical Neurobiology (FL, VSS), University of California, San Francisco, San Francisco, California.
    Search for articles by this author



      Deep layer excitatory circuits in the prefrontal cortex represent the strongest locus for genetic convergence in autism, but specific abnormalities within these circuits that mediate key features of autism, such as cognitive or attentional deficits, remain unknown. Attention normally increases the sensitivity of neural populations to incoming signals by decorrelating ongoing cortical circuit activity. Here, we investigated whether mechanisms underlying this phenomenon might be disrupted within deep layer prefrontal circuits in mouse models of autism.


      We isolated deep layer prefrontal circuits in brain slices then used single-photon GCaMP imaging to record activity from many (50 to 100) neurons simultaneously to study patterns of spontaneous activity generated by these circuits under normal conditions and in two etiologically distinct models of autism: mice exposed to valproic acid in utero and Fmr1 knockout mice.


      We found that modest doses of the cholinergic agonist carbachol normally decorrelate spontaneous activity generated by deep layer prefrontal networks. This effect was disrupted in both valproic acid-exposed and Fmr1 knockout mice but intact following other manipulations that did not model autism.


      Our results suggest that cholinergic modulation may contribute to attention by acting on local cortical microcircuits to decorrelate spontaneous activity. Furthermore, defects in this mechanism represent a microcircuit-level endophenotype that could link diverse genetic and developmental disruptions to attentional deficits in autism. Future studies could elucidate pathways leading from various etiologies to this circuit-level abnormality or use this abnormality itself as a target and identify novel therapeutic strategies that restore normal circuit function.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Willsey A.J.
        • Sanders S.J.
        • Li M.
        • Dong S.
        • Tebbenkamp A.T.
        • Muhle R.A.
        • et al.
        Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism.
        Cell. 2013; 155: 997-1007
        • Chang J.
        • Gilman S.R.
        • Chiang A.H.
        • Sanders S.J.
        • Vitkup D.
        Genotype to phenotype relationships in autism spectrum disorders.
        Nat Neurosci. 2014; 18: 191-198
        • Sadovsky A.J.
        • MacLean J.N.
        Scaling of topologically similar functional modules defines mouse primary auditory and somatosensory microcircuitry.
        J Neurosci. 2013; 33 (14060a): 14048-14060
        • Runfeldt M.J.
        • Sadovsky A.J.
        • MacLean J.N.
        Acetylcholine functionally reorganizes neocortical microcircuits.
        J Neurophysiol. 2014; 112: 1205-1216
        • Mitchell J.F.
        • Sundberg K.A.
        • Reynolds J.H.
        Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4.
        Neuron. 2009; 63: 879-888
        • Cohen M.R.
        • Maunsell J.H.
        Attention improves performance primarily by reducing interneuronal correlations.
        Nat Neurosci. 2009; 12: 1594-1600
        • Goard M.
        • Dan Y.
        Basal forebrain activation enhances cortical coding of natural scenes.
        Nat Neurosci. 12. 2009: 1444-1449
        • Cornish K.
        • Sudhalter V.
        • Turk J.
        Attention and language in fragile X.
        Ment Retard Dev Disabil Res Rev. 2004; 10: 11-16
        • Boyle L.
        • Kaufmann W.E.
        The behavioral phenotype of FMR1 mutations.
        Am J Med Genet C Semin Med Genet. 2010; 154C: 469-476
        • Gadow K.D.
        • Devincent C.J.
        • Pomeroy J.
        • Azizian A.
        Psychiatric symptoms in preschool children with PDD and clinic and comparison samples.
        J Autism Dev Disord. 2004; 34: 379-393
        • Gadow K.D.
        • Devincent C.J.
        • Pomeroy J.
        • Azizian A.
        Comparison of DSM-IV symptoms in elementary school-age children with PDD versus clinic and community samples.
        Autism. 2005; 9: 392-415
        • Moon J.
        • Beaudin A.E.
        • Verosky S.
        • Driscoll L.L.
        • Weiskopf M.
        • Levitsky D.A.
        • et al.
        Attentional dysfunction, impulsivity, and resistance to change in a mouse model of fragile X syndrome.
        Behav Neurosci. 2006; 120: 1367-1379
        • Casten K.S.
        • Gray A.C.
        • Burwell R.D.
        Discrimination learning and attentional set formation in a mouse model of Fragile X.
        Behav Neurosci. 2011; 125: 473-479
        • Dickson P.E.
        • Corkill B.
        • McKimm E.
        • Miller M.M.
        • Calton M.A.
        • Goldowitz D.
        • et al.
        Effects of stimulus salience on touchscreen serial reversal learning in a mouse model of fragile X syndrome.
        Behav Brain Res. 2013; 252: 126-135
        • McTighe S.M.
        • Neal S.J.
        • Lin Q.
        • Hughes Z.A.
        • Smith D.G.
        The BTBR mouse model of autism spectrum disorders has learning and attentional impairments and alterations in acetylcholine and kynurenic acid in prefrontal cortex.
        PLoS One. 2013; 8: e62189
        • Dalley J.W.
        • Cardinal R.N.
        • Robbins T.W.
        Prefrontal executive and cognitive functions in rodents: Neural and neurochemical substrates.
        Neurosci Biobehav Rev. 2004; 28: 771-784
        • Parikh V.
        • Sarter M.
        Cholinergic mediation of attention: Contributions of phasic and tonic increases in prefrontal cholinergic activity.
        Ann N Y Acad Sci. 2008; 1129: 225-235
        • Tian L.
        • Hires S.A.
        • Mao T.
        • Huber D.
        • Chiappe M.E.
        • Chalasani S.H.
        • et al.
        Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators.
        Nat Methods. 2009; 6: 875-881
        • Welch J.M.
        • Lu J.
        • Rodriguiz R.M.
        • Trotta N.C.
        • Peca J.
        • Ding J.D.
        • et al.
        Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice.
        Nature. 2007; 448: 894-900
        • Gee S.
        • Ellwood I.
        • Patel T.
        • Luongo F.
        • Deisseroth K.
        • Sohal V.S.
        Synaptic activity unmasks dopamine D2 receptor modulation of a specific class of layer V pyramidal neurons in prefrontal cortex.
        J Neurosci. 2012; 32: 4959-4971
        • Zhao S.
        • Ting J.T.
        • Atallah H.E.
        • Qiu L.
        • Tan J.
        • Gloss B.
        • et al.
        Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function.
        Nat Methods. 2011; 8: 745-752
        • Mukamel E.A.
        • Nimmerjahn A.
        • Schnitzer M.J.
        Automated analysis of cellular signals from large-scale calcium imaging data.
        Neuron. 2009; 63: 747-760
        • O’Connor D.H.
        • Peron S.P.
        • Huber D.
        • Svoboda K.
        Neural activity in barrel cortex underlying vibrissa-based object localization in mice.
        Neuron. 2010; 67: 1048-1061
        • Sanchez-Vives M.V.
        • McCormick D.A.
        Cellular and network mechanisms of rhythmic recurrent activity in neocortex.
        Nat Neurosci. 2000; 3: 1027-1034
        • Moore S.J.
        • Turnpenny P.
        • Quinn A.
        • Glover S.
        • Lloyd D.J.
        • Montgomery T.
        • Dean J.C.
        A clinical study of 57 children with fetal anticonvulsant syndromes.
        J Med Genet. 2000; 37: 489-497
        • Rasalam A.D.
        • Hailey H.
        • Williams J.H.
        • Moore S.J.
        • Turnpenny P.D.
        • Lloyd D.J.
        • Dean J.C.
        Characteristics of fetal anticonvulsant syndrome associated autistic disorder.
        Dev Med Child Neurol. 2005; 47: 551-555
        • Christensen J.
        • Gronborg T.K.
        • Sorensen M.J.
        • Schendel D.
        • Parner E.T.
        • Pedersen L.H.
        • Vestergaard M.
        Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism.
        JAMA. 2013; 309: 1696-1703
        • Schneider T.
        • Przewlocki R.
        Behavioral alterations in rats prenatally exposed to valproic acid: Animal model of autism.
        Neuropsychopharmacology. 2005; 30: 80-89
        • Schneider T.
        • Roman A.
        • Basta-Kaim A.
        • Kubera M.
        • Budziszewska B.
        • Schneider K.
        • Przewłocki R.
        Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid.
        Psychoneuroendocrinology. 2008; 33: 728-740
        • Bakker C.E.
        • Verheij C.
        • Willemsen R.
        • van der Helm R.
        • Oerlemans F.
        • Vermey M.
        • et al.
        Fmr1 knockout mice: A model to study fragile X mental retardation. The Dutch-Belgian Fragile X Consortium.
        Cell. 1994; 78: 23-33
        • Pletnikov M.V.
        • Ayhan Y.
        • Nikolskaia O.
        • Xu Y.
        • Ovanesov M.V.
        • Huang H.
        • et al.
        Inducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophrenia.
        Mol Psychiatry. 2008; 13 (115): 173-186
        • Hikida T.
        • Jaaro-Peled H.
        • Seshadri S.
        • Oishi K.
        • Hookway C.
        • Kong S.
        • et al.
        Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans.
        Proc Natl Acad Sci U S A. 2007; 104: 14501-14506
        • Clapcote S.J.
        • Lipina T.V.
        • Millar J.K.
        • Mackie S.
        • Christie S.
        • Ogawa F.
        • et al.
        Behavioral phenotypes of Disc1 missense mutations in mice.
        Neuron. 2007; 54: 387-402
        • Kodama M.
        • Fujioka T.
        • Duman R.S.
        Chronic olanzapine or fluoxetine administration increases cell proliferation in hippocampus and prefrontal cortex of adult rat.
        Biol Psychiatry. 2004; 56: 570-580
        • Markram H.
        • Rinaldi T.
        • Markram K.
        The intense world syndrome--an alternative hypothesis for autism.
        Front Neurosci. 2007; 1: 77-96
        • Gibson J.R.
        • Bartley A.F.
        • Hays S.A.
        • Huber K.M.
        Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome.
        J Neurophysiol. 2008; 100: 2615-2626
        • Goncalves J.T.
        • Anstey J.E.
        • Golshani P.
        • Portera-Cailliau C.
        Circuit level defects in the developing neocortex of Fragile X mice.
        Nat Neurosci. 2013; 16: 903-909
        • Kawaguchi Y.
        Selective cholinergic modulation of cortical GABAergic cell subtypes.
        J Neurophysiol. 1997; 78: 1743-1747
        • Xiang Z.
        • Huguenard J.R.
        • Prince D.A.
        Cholinergic switching within neocortical inhibitory networks.
        Science. 1998; 281: 985-988
        • Pafundo D.E.
        • Miyamae T.
        • Lewis D.A.
        • Gonzalez-Burgos G.
        Cholinergic modulation of neuronal excitability and recurrent excitation-inhibition in prefrontal cortex circuits: Implications for gamma oscillations.
        J Physiol. 2013; 591: 4725-4748
        • Dembrow N.C.
        • Chitwood R.A.
        • Johnston D.
        Projection-specific neuromodulation of medial prefrontal cortex neurons.
        J Neurosci. 2010; 30: 16922-16937
        • Gil Z.
        • Connors B.W.
        • Amitai Y.
        Differential regulation of neocortical synapses by neuromodulators and activity.
        Neuron. 1997; 19: 679-686