Advertisement

Cerebro-cerebellar Resting-State Functional Connectivity in Children and Adolescents with Autism Spectrum Disorder

      Abstract

      Background

      The cerebellum plays important roles in sensori-motor and supramodal cognitive functions. Cellular, volumetric, and functional abnormalities of the cerebellum have been found in autism spectrum disorders (ASD), but no comprehensive investigation of cerebro-cerebellar connectivity in ASD is available.

      Methods

      We used resting-state functional connectivity magnetic resonance imaging in 56 children and adolescents (28 subjects with ASD, 28 typically developing subjects) 8–17 years old. Partial and total correlation analyses were performed for unilateral regions of interest (ROIs), distinguished in two broad domains as sensori-motor (premotor/primary motor, somatosensory, superior temporal, and occipital) and supramodal (prefrontal, posterior parietal, and inferior and middle temporal).

      Results

      There were three main findings: 1) Total correlation analyses showed predominant cerebro-cerebellar functional overconnectivity in the ASD group; 2) partial correlation analyses that emphasized domain specificity (sensori-motor vs. supramodal) indicated a pattern of robustly increased connectivity in the ASD group (compared with the typically developing group) for sensori-motor ROIs but predominantly reduced connectivity for supramodal ROIs; and 3) this atypical pattern of connectivity was supported by significantly increased noncanonical connections (between sensori-motor cerebral and supramodal cerebellar ROIs and vice versa) in the ASD group.

      Conclusions

      Our findings indicate that sensori-motor intrinsic functional connectivity is atypically increased in ASD, at the expense of connectivity supporting cerebellar participation in supramodal cognition.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Holmes G.
        The cerebellum of man.
        Brain. 1939; 62: 21-30
        • Leiner H.C.
        • Leiner A.L.
        • Dow R.S.
        Cognitive and language functions of the human cerebellum.
        Trends Neurosci. 1993; 16: 444-454
        • Schmahmann J.D.
        An emerging concept: The cerebellar contribution to higher function.
        Arch Neurol. 1991; 48: 1178-1187
        • Bostan A.C.
        • Dum R.P.
        • Strick P.L.
        Cerebellar networks with the cerebral cortex and basal ganglia.
        Trends Cogn Sci. 2013; 17: 241-254
        • Habas C.
        • Kamdar N.
        • Nguyen D.
        • Prater K.
        • Beckmann C.F.
        • Menon V.
        • et al.
        Distinct cerebellar contributions to intrinsic connectivity networks.
        J Neurosci. 2009; 29: 8586-8594
        • Bauman M.L.
        • Kemper T.L.
        Developmental cerebellar abnormalities: A consistent finding in early infantile autism.
        Neurology. 1986; 36: 190
        • Courchesne E.
        • Yeung-Courchesne R.
        • Press G.A.
        • Hesselink J.R.
        • Jernigan T.L.
        Hypoplasia of cerebellar vermal lobules VI and VII in autism.
        N Engl J Med. 1988; 318: 1349-1354
        • Fatemi S.H.
        • Aldinger K.A.
        • Ashwood P.
        • Bauman M.L.
        • Blaha C.D.
        • Blatt G.J.
        • et al.
        Consensus paper: Pathological role of the cerebellum in autism.
        Cerebellum. 2012; 11: 777-807
        • Fatemi S.H.
        • Halt A.R.
        • Realmuto G.
        • Earle J.
        • Kist D.A.
        • Thuras P.
        • et al.
        Purkinje cell size is reduced in cerebellum of patients with autism.
        Cell Mol Neurobiol. 2002; 22: 171-175
        • Bauman M.L.
        • Kemper T.L.
        Neuroanatomic observations of the brain in autism: A review and future directions.
        Int J Dev Neurosci. 2005; 23: 183-187
        • Ritvo E.R.
        • Freeman B.J.
        • Scheibel A.B.
        • Duong T.
        • Robinson H.
        • Guthrie D.
        • et al.
        Lower Purkinje cell counts in the cerebella of four autistic subjects: Initial findings of the UCLA-NSAC autopsy research report.
        Am J Psychiatry. 1986; 143: 862-866
        • Ryu Y.H.
        • Lee J.D.
        • Yoon P.H.
        • Kim D.I.
        • Lee H.B.
        • Shin Y.J.
        Perfusion impairments in infantile autism on technetium-99m ethyl cysteinate dimer brain single-photon emission tomography: Comparison with findings on magnetic resonance imaging.
        Eur J Nucl Med. 1999; 26: 253-259
        • Ipser J.C.
        • Syal S.
        • Bentley J.
        • Adnams C.M.
        • Steyn B.
        • Stein D.J.
        1H-MRS in autism spectrum disorders: A systematic meta-analysis.
        Metab Brain Dis. 2012; 27: 275-287
        • Hardan A.Y.
        • Minshew N.J.
        • Harenski K.
        • Keshavan M.S.
        Posterior fossa magnetic resonance imaging in autism.
        J Am Acad Child Adolesc Psychiatry. 2001; 40: 666-672
        • Craig M.C.
        • Zaman S.H.
        • Daly E.M.
        • Cutter W.J.
        • DMW Robertson
        • Hallahan B.
        • et al.
        Women with autistic-spectrum disorder: Magnetic resonance imaging study of brain anatomy.
        Br J Psychiatry. 2007; 191: 224-228
        • Ke X.
        • Hong S.
        • Tang T.
        • Zou B.
        • Li H.
        • Hang Y.
        • et al.
        Voxel-based morphometry study on brain structure in children with high-functioning autism.
        NeuroReport. 2008; 19: 921-925
        • McAlonan G.M.
        • Cheung V.
        • Cheung C.
        • Suckling J.
        • Lam G.Y.
        • Tai K.S.
        • et al.
        Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism.
        Brain. 2005; 128: 268-276
        • Courchesne E.
        • Karns C.M.
        • Davis H.R.
        • Ziccardi R.
        • Carper R.A.
        • Tigue Z.D.
        • et al.
        Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study.
        Neurology. 2001; 57: 245-254
        • Sparks B.F.
        • Friedman S.D.
        • Shaw D.W.
        • Aylward E.H.
        • Echelard D.
        • Artru A.A.
        • et al.
        Brain structural abnormalities in young children with autism spectrum disorder.
        Neurology. 2002; 59: 184-192
        • Hashimoto T.
        • Tayama M.
        • Murakawa K.
        • Yoshimoto T.
        Development of the brainstem and cerebellum in autistic patients.
        J Autism Dev Disord. 1995; 25: 1-18
        • Webb S.J.
        • Sparks B.-F.
        • Friedman S.D.
        • Shaw D.W.W.
        • Giedd J.
        • Dawson G.
        • et al.
        Cerebellar vermal volumes and behavioral correlates in children with autism spectrum disorder.
        Psychiatry Res Neuroimaging. 2009; 172: 61-67
        • Riva D.
        • Annunziata S.
        • Contarino V.
        • Erbetta A.
        • Aquino D.
        • Bulgheroni S.
        Gray matter reduction in the vermis and CRUS-II is associated with social and interaction deficits in low-functioning children with autistic spectrum disorders: A VBM-DARTEL study.
        Cerebellum. 2013; 12: 676-685
        • Piven J.
        • Saliba K.
        • Bailey J.
        • Arndt S.
        An MRI study of autism: The cerebellum revisited.
        Neurology. 1997; 49: 546-551
        • Becker E.B.
        • Stoodley C.J.
        Autism spectrum disorder and the cerebellum.
        Int Rev Neurobiol. 2013; 113: 1-34
        • Limperopoulos C.
        • Chilingaryan G.
        • Sullivan N.
        • Guizard N.
        • Robertson R.L.
        • du Plessis A.J.
        Injury to the premature cerebellum: Outcome is related to remote cortical development.
        Cereb Cortex. 2014; 24: 728-736
        • Sivaswamy L.
        • Kumar A.
        • Rajan D.
        • Behen M.
        • Muzik O.
        • Chugani D.
        • et al.
        A diffusion tensor imaging study of the cerebellar pathways in children with autism spectrum disorder.
        J Child Neurol. 2010; 25: 1223-1231
        • Shukla D.K.
        • Keehn B.
        • Lincoln A.J.
        • Müller R.-A.
        White matter compromise of callosal and subcortical fiber tracts in children with autism spectrum disorder: A diffusion tensor imaging study.
        J Am Acad Child Adolesc Psychiatry. 2010; 49: 1269-1278
        • Catani M.
        • Jones D.K.
        • Daly E.
        • Embiricos N.
        • Deeley Q.
        • Pugliese L.
        • et al.
        Altered cerebellar feedback projections in Asperger syndrome.
        Neuroimage. 2008; 41: 1184-1191
        • Mostofsky S.H.
        • Powell S.K.
        • Simmonds D.J.
        • Goldberg M.C.
        • Caffo B.
        • Pekar J.J.
        Decreased connectivity and cerebellar activity in autism during motor task performance.
        Brain. 2009; 132: 2413-2425
        • Verly M.
        • Verhoeven J.
        • Zink I.
        • Mantini D.
        • Oudenhove L.V.
        • Lagae L.
        • et al.
        Structural and functional underconnectivity as a negative predictor for language in autism.
        Hum Brain Mapp. 2014; 35: 3602-3615
        • Biswal B.
        • Yetkin F.Z.
        • Haughton V.M.
        • Hyde J.S.
        Functional connectivity in the motor cortex of resting human brain using echo-planar MRI.
        Magn Reson Med. 1995; 34: 537-541
        • Cordes D.
        • Haughton V.M.
        • Arfanakis K.
        • Carew J.D.
        • Turski P.A.
        • Moritz C.H.
        • et al.
        Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data.
        AJNR Am J Neuroradiol. 2001; 22: 1326-1333
        • Bullmore E.
        • Sporns O.
        Complex brain networks: Graph theoretical analysis of structural and functional systems.
        Nat Rev Neurosci. 2009; 10: 186-198
        • Honey C.J.
        • Sporns O.
        • Cammoun L.
        • Gigandet X.
        • Thiran J.P.
        • Meuli R.
        • et al.
        Predicting human resting-state functional connectivity from structural connectivity.
        Proc Natl Acad Sci U S A. 2009; 106: 2035-2040
        • Greicius M.D.
        • Supekar K.
        • Menon V.
        • Dougherty R.F.
        Resting-state functional connectivity reflects structural connectivity in the default mode network.
        Cerebral Cortex. 2009; 19: 72-78
        • Smith S.M.
        • Fox P.T.
        • Miller K.L.
        • Glahn D.C.
        • Fox P.M.
        • Mackay C.E.
        • et al.
        Correspondence of the brainʼs functional architecture during activation and rest.
        Proc Natl Acad Sci U S A. 2009; 106: 13040-13045
        • Greicius M.D.
        • Krasnow B.
        • Reiss A.L.
        • Menon V.
        Functional connectivity in the resting brain: A network analysis of the default mode hypothesis.
        Proc Natl Acad Sci U S A. 2003; 100: 253-258
        • Beckmann C.F.
        • DeLuca M.
        • Devlin J.T.
        • Smith S.M.
        Investigations into resting-state connectivity using independent component analysis.
        Philos Trans R Soc Lond B Biol Sci. 2005; 360: 1001-1013
        • Stoodley C.J.
        • Desmond J.E.
        • Schmahmann J.D.
        Functional topography of the cerebellum revealed by functional neuroimaging studies.
        in: Manto M.U. Gruol D.L. Schmahmann J.D. Koibuchi N. Rossi D. Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht, The Netherlands2012
        • OʼReilly J.X.
        • Beckmann C.F.
        • Tomassini V.
        • Ramnani N.
        • Johansen-Berg H.
        Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity.
        Cereb Cortex. 2010; 20: 953-965
        • Stoodley C.J.
        The cerebellum and cognition: Evidence from functional imaging studies.
        Cerebellum. 2012; 11: 352-365
        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders-IV-TR.
        4th ed. American Psychiatric Press, Washington, DC2000
        • Lord C.
        • Rutter M.
        • Le Couteur A.
        Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders.
        J Autism Dev Disord. 1994; 24: 659-685
        • Lord C.
        • Rutter M.
        • DiLavore P.
        • Risi S.
        Autism Diagnostic Observation Schedule.
        Western Psychological Services, Los Angeles2001
        • Oldfield R.C.
        The assessment and analysis of handedness: The Edinburgh inventory.
        Neuropsychologia. 1971; 9: 97-113
        • Wechsler D.
        Wechsler Abbreviated Scale of Intelligence (WASI).
        Psychological Corporation, San Antonio, TX1999
        • Constantino J.N.
        • Gruber C.P.
        Social Responsiveness Scale.
        Western Psychological Services, Los Angeles2005
        • Cox R.W.
        AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages.
        Comput Biomed Res. 1996; 29: 162-173
        • Power J.D.
        • Mitra A.
        • Laumann T.O.
        • Snyder A.Z.
        • Schlaggar B.L.
        • Petersen S.E.
        Methods to detect, characterize, and remove motion artifact in resting state fMRI.
        Neuroimage. 2014; 84: 320-341
        • Schölvinck M.L.
        • Maier A.
        • Ye F.Q.
        • Duyn J.H.
        • Leopold D.A.
        Neural basis of global resting-state fMRI activity.
        Proc Natl Acad Sci U S A. 2010; 107: 10238-10243
        • Gotts S.J.
        • Saad Z.S.
        • Jo H.J.
        • Wallace G.L.
        • Cox R.W.
        • Martin A.
        The perils of global signal regression for group comparisons: A case study of autism spectrum disorders.
        Front Hum Neurosci. 2013; 7: 356
        • Saad Z.S.
        • Gotts S.J.
        • Murphy K.
        • Chen G.
        • Jo H.J.
        • Martin A.
        • et al.
        Trouble at rest: How correlation patterns and group differences become distorted after global signal regression.
        Brain Connect. 2012; 2: 25-32
        • Power J.D.
        • Barnes K.A.
        • Snyder A.Z.
        • Schlaggar B.L.
        • Petersen S.E.
        Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion.
        Neuroimage. 2012; 59: 2142-2154
        • Satterthwaite T.D.
        • Elliott M.A.
        • Gerraty R.T.
        • Ruparel K.
        • Loughead J.
        • Calkins M.E.
        • et al.
        An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data.
        Neuroimage. 2013; 64: 240-256
        • Forman S.D.
        • Cohen J.D.
        • Fitzgerald M.
        • Eddy W.F.
        • Mintun M.A.
        • Noll D.C.
        Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): Use of a cluster-size threshold.
        Magn Reson Med. 1995; 33: 636-647
        • Woo C.W.
        • Krishnan A.
        • Wager T.D.
        Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations.
        Neuroimage. 2014; 91: 412-419
        • Buckner R.L.
        • Krienen F.M.
        • Castellanos A.
        • Diaz J.C.
        • Yeo B.T.
        The organization of the human cerebellum estimated by intrinsic functional connectivity.
        J Neurophysiol. 2011; 106: 2322-2345
        • Stoodley C.J.
        • Valera E.M.
        • Schmahmann J.D.
        Functional topography of the cerebellum for motor and cognitive tasks: An fMRI study.
        Neuroimage. 2012; 59: 1560-1570
        • Bushara K.O.
        • Wheat J.M.
        • Khan A.
        • Mock B.J.
        • Turski P.A.
        • Sorenson J.
        • et al.
        Multiple tactile maps in the human cerebellum.
        Neuroreport. 2001; 12: 2483-2486
        • Ilg W.
        • Giese M.A.
        • Gizewski E.R.
        • Schoch B.
        • Timmann D.
        The influence of focal cerebellar lesions on the control and adaptation of gait.
        Brain. 2008; 131: 2913-2927
        • Ramnani N.
        The primate cortico-cerebellar system: Anatomy and function.
        Nat Rev Neurosci. 2006; 7: 511-522
        • Schmahmann J.D.
        The Cerebellum and Cognition.
        Academic Press, San Diego1997
        • Müller R.-A.
        • Shih P.
        • Keehn B.
        • Deyoe J.R.
        • Leyden K.M.
        • Shukla D.K.
        Underconnected, but how? A survey of functional connectivity MRI studies in autism spectrum disorders.
        Cereb Cortex. 2011; 21: 2233-2243
        • Nair A.
        • Keown C.L.
        • Datko M.
        • Shih P.
        • Keehn B.
        • Müller R.A.
        Impact of methodological variables on functional connectivity findings in autism spectrum disorders.
        Hum Brain Mapp. 2014; 35: 4035-4048
        • Di Martino A.
        • Kelly C.
        • Grzadzinski R.
        • Zuo X.N.
        • Mennes M.
        • Mairena M.A.
        • et al.
        Aberrant striatal functional connectivity in children with autism.
        Biol Psychiatry. 2011; 69: 847-856
        • Shih P.
        • Keehn B.
        • Oram J.K.
        • Leyden K.M.
        • Keown C.L.
        • Müller R.-A.
        Functional differentiation of posterior superior temporal sulcus in autism: A functional connectivity magnetic resonance imaging study.
        Biol Psychiatry. 2011; 70: 270-277
        • Supekar K.
        • Uddin L.Q.
        • Khouzam A.
        • Phillips J.
        • Gaillard W.D.
        • Kenworthy L.E.
        • et al.
        Brain hyperconnectivity in children with autism and its links with social deficits.
        Cell Rep. 2013; 5: 738-747
        • Fair D.A.
        • Cohen A.L.
        • Dosenbach N.U.
        • Church J.A.
        • Miezin F.M.
        • Barch D.M.
        • et al.
        The maturing architecture of the brainʼs default network.
        Proc Natl Acad Sci U S A. 2008; 105: 4028-4032
        • Lewis C.M.
        • Baldassarre A.
        • Committeri G.
        • Romani G.L.
        • Corbetta M.
        Learning sculpts the spontaneous activity of the resting human brain.
        Proc Natl Acad Sci U S A. 2009; 106: 17558-17563
        • Shukla D.K.
        • Keehn B.
        • Lincoln A.J.
        • Müller R.-A.
        White matter compromise of callosal and subcortical fiber tracts in children with autism spectrum disorder: A diffusion tensor imaging study.
        J Am Acad Child Adolesc Psychiatry. 2010; 49 (1278.e1261–e1262): 1269-1278
        • Nair A.
        • Treiber J.M.
        • Shukla D.K.
        • Shih P.
        • Müller R.-A.
        Thalamocortical connectivity in autism spectrum disorder: A study of functional and anatomical connectivity.
        Brain. 2013; 136: 1942-1955
        • Courchesne E.
        • Campbell K.
        • Solso S.
        Brain growth across the life span in autism: Age-specific changes in anatomical pathology.
        Brain Res. 2011; 1380: 138-145
        • Weinstein M.
        • Ben-Sira L.
        • Levy Y.
        • Zachor D.A.
        • Ben Itzhak E.
        • Artzi M.
        • et al.
        Abnormal white matter integrity in young children with autism.
        Hum Brain Mapp. 2011; 32: 534-543
        • Wolff J.J.
        • Gu H.
        • Gerig G.
        • Elison J.T.
        • Styner M.
        • Gouttard S.
        • et al.
        Differences in white matter fiber tract development present from 6 to 24 months in infants with autism.
        Am J Psychiatry. 2012; 169: 589-600
        • Mottron L.
        • Dawson M.
        • Soulieres I.
        • Hubert B.
        • Burack J.
        Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception.
        J Autism Dev Disord. 2006; 36: 27-43
        • Minshew N.J.
        • Sweeney J.
        • Luna B.
        Autism as a selective disorder of complex information processing and underdevelopment of neocortical systems.
        Mol Psychiatry. 2002; 7: S14-S15
        • Verly M.
        • Verhoeven J.
        • Zink I.
        • Mantini D.
        • Peeters R.
        • Deprez S.
        • et al.
        Altered functional connectivity of the language network in ASD: Role of classical language areas and cerebellum.
        Neuroimage Clin. 2014; 4: 374-382
        • Müller R.-A.
        • Kleinhans N.
        • Kemmotsu N.
        • Pierce K.
        • Courchesne E.
        Abnormal variability and distribution of functional maps in autism: An FMRI study of visuomotor learning.
        Am J Psychiatry. 2003; 160: 1847-1862
        • Uddin L.Q.
        • Supekar K.
        • Menon V.
        Reconceptualizing functional brain connectivity in autism from a developmental perspective.
        Front Hum Neurosci. 2013; 7: 458
        • Suzuki K.
        • Sugihara G.
        • Ouchi Y.
        • Nakamura K.
        • Futatsubashi M.
        • Takebayashi K.
        • et al.
        Microglial activation in young adults with autism spectrum disorder.
        JAMA Psychiatry. 2013; 70: 49-58
        • Vissers M.E.
        • Cohen M.X.
        • Geurts H.M.
        Brain connectivity and high functioning autism: A promising path of research that needs refined models, methodological convergence, and stronger behavioral links.
        Neurosci Biobehav Rev. 2012; 36: 604-625
        • Villalobos M.E.
        • Mizuno A.
        • Dahl B.C.
        • Kemmotsu N.
        • Müller R.-A.
        Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism.
        Neuroimage. 2005; 25: 916-925
        • Lynch C.J.
        • Uddin L.Q.
        • Supekar K.
        • Khouzam A.
        • Phillips J.
        • Menon V.
        Default mode network in childhood autism: Posteromedial cortex heterogeneity and relationship with social deficits.
        Biol Psychiatry. 2013; 74: 212-219
        • Shen M.D.
        • Shih P.
        • Ottl B.
        • Keehn B.
        • Leyden K.M.
        • Gaffrey M.S.
        • et al.
        Atypical lexicosemantic function of extrastriate cortex in autism spectrum disorder: Evidence from functional and effective connectivity.
        Neuroimage. 2012; 62: 1780-1791
        • Fishman I.
        • Keown C.L.
        • Lincoln A.J.
        • Pineda J.A.
        • Müller R.-A.
        Atypical cross talk between mentalizing and mirror neuron networks in autism spectrum disorder.
        JAMA Psychiatry. 2014; 71: 751-760