Advertisement

Excitation-Inhibition Discoordination in Rodent Models of Mental Disorders

  • André A. Fenton
    Correspondence
    Address correspondence to André A. Fenton, Ph.D., New York University, Neurobiology of Cognition laboratory, Center for Neural Science, 4 Washington Place, New York, NY 10012
    Affiliations
    Neurobiology of Cognition Laboratory, Center for Neural Science, New York University, New York, New York.
    Search for articles by this author

      Abstract

      Animal models of mental illness provide a foundation for evaluating hypotheses for the mechanistic causes of mental illness. Neurophysiological investigations of neural network activity in rodent models of mental dysfunction are reviewed from the conceptual framework of the discoordination hypothesis, which asserts that failures of neural coordination cause cognitive deficits in the judicious processing and use of information. Abnormal dynamic coordination of excitatory and inhibitory neural discharge in pharmacologic and genetic rodent models supports the discoordination hypothesis. These observations suggest excitation-inhibition discoordination and aberrant neural circuit dynamics as causes of cognitive impairment, as well as therapeutic targets for cognition-promoting treatments.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      REFERENCES

      1. Hesse H (1922): Siddhartha - An Indic Poem. Lesser R, trans-ed 2007. New York: Barnes and Noble Books

        • Beddington J.
        • Cooper C.L.
        • Field J.
        • Goswami U.
        • Huppert F.A.
        • Jenkins R.
        • et al.
        The mental wealth of nations.
        Nature. 2008; 455: 1057-1060
        • Leucht S.
        • Cipriani A.
        • Geddes J.R.
        • Salanti G.
        • Davis J.M.
        Efficacy of antipsychotic drugs for schizophrenia - Authors’ reply.
        Lancet. 2013; 382: 1874-1875
        • Lieberman J.A.
        • Stroup T.S.
        • McEvoy J.P.
        • Swartz M.S.
        • Rosenheck R.A.
        • Perkins D.O.
        • et al.
        Effectiveness of antipsychotic drugs in patients with chronic schizophrenia.
        N Engl J Med. 2005; 353: 1209-1223
        • Laughlin R.B.
        • Pines D.
        • Schmalian J.
        • Stojkovic B.P.
        • Wolynes P.
        The middle way.
        Proc Natl Acad Sci U S A. 2000; 97: 32-37
        • Buzsaki G.
        Neural syntax: Cell assemblies, synapsembles, and readers.
        Neuron. 2010; 68: 362-385
        • Goldman-Rakic P.S.
        The physiological approach: Functional architecture of working memory and disordered cognition in schizophrenia.
        Biol Psychiatry. 1999; 46: 650-661
        • Lipska B.K.
        • Weinberger D.R.
        To model a psychiatric disorder in animals: Schizophrenia as a reality test.
        Neuropsychopharmacology. 2000; 23: 223-239
        • Corvin A.
        • Morris D.W.
        Genome-wide association studies: Findings at the major histocompatibility complex locus in psychosis.
        Biol Psychiatry. 2013; 75: 276-283
        • Cuthbert B.N.
        • Insel T.R.
        Toward new approaches to psychotic disorders: The NIMH Research Domain Criteria project.
        Schizophr Bull. 2010; 36: 1061-1062
        • Vassos E.
        • Collier D.A.
        • Holden S.
        • Patch C.
        • Rujescu St, D.,
        • Clair D.
        • Lewis C.M.
        Penetrance for copy number variants associated with schizophrenia.
        Hum Mol Genet. 2010; 19: 3477-3481
        • Weatherall D.J.
        Phenotype-genotype relationships in monogenic disease: Lessons from the thalassaemias.
        Nat Rev Genet. 2001; 2: 245-255
        • Cross-Disorder Group of the Psychiatric Genomics Consortium
        Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis.
        Lancet. 2013; 381: 1371-1379
        • Lee S.H.
        • Ripke S.
        • Neale B.M.
        • Faraone S.V.
        • Purcell S.M.
        • et al.
        • Cross-Disorder Group of the Psychiatric Genomics Consortium,
        Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs.
        Nat Genet. 2013; 45: 984-994
        • Mitchell K.J.
        • O’Donnell P.
        • Durstewitz D.
        • Fenton A.A.
        • Gingrich J.A.
        • Gordon J.A.
        • et al.
        A framework for the use of models in schizophrenia.
        in: Silverstein S.M. Moghaddam B. Wykes T. Schizophrenia: Evolution and Synthesis. MIT Press, Cambridge, MA2013: 212-226
        • O’Donnell P.
        Of mice and men: What physiological correlates of cognitive deficits in a mouse model of schizophrenia tell us about psychiatric disease.
        Neuron. 2013; 80: 265-266
        • Tononi G.
        • Edelman G.M.
        Schizophrenia and the mechanisms of conscious integration.
        Brain Res Brain Res Rev. 2000; 31: 391-400
        • Phillips W.A.
        • Silverstein S.M.
        Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia.
        Behav Brain Sci. 2003; 26 (discussion 82–137): 65-82
        • Lisman J.E.
        • Coyle J.T.
        • Green R.W.
        • Javitt D.C.
        • Benes F.M.
        • Heckers S.
        • Grace A.A.
        Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia.
        Trends Neurosci. 2008; 31: 234-242
        • Uhlhaas P.J.
        • Singer W.
        Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology.
        Neuron. 2006; 52: 155-168
        • Jones M.W.
        Errant ensembles: Dysfunctional neuronal network dynamics in schizophrenia.
        Biochem Soc Trans. 2010; 38: 516-521
        • Fenton A.A.
        Neural coordination and psychotic disorganization.
        in: Holscher C. Munk M.H. Information Processing by Neuronal Populations. Cambridge University Press, London2008: 387-408
        • Moghaddam B.
        • Wood J.
        Teamwork matters: Coordinated neuronal activity in brain systems relevant to psychiatric disorders.
        JAMA Psychiatry. 2014; 71: 197-199
        • Schneidman E.
        • Berry 2nd, M.J.
        • Segev R.
        • Bialek W.
        Weak pairwise correlations imply strongly correlated network states in a neural population.
        Nature. 2006; 440: 1007-1012
        • Phillips W.A.
        • Singer W.
        In search of common foundations for cortical computation.
        Behav Brain Sci. 1997; 20 (discussion 683–722): 657-683
        • Olypher A.V.
        • Klement D.
        • Fenton A.A.
        Cognitive disorganization in hippocampus: A physiological model of the disorganization in psychosis.
        J Neurosci. 2006; 26: 158-168
        • Stroop J.R.
        Studies of interference in serial verbal reactions.
        J Exp Psychol. 1935; 18: 643-662
        • Robbins T.W.
        The 5-choice serial reaction time task: Behavioural pharmacology and functional neurochemistry.
        Psychopharmacology (Berl). 2002; 163: 362-380
        • Fenton A.A.
        • Wesierska M.
        • Kaminsky Y.
        • Bures J.
        Both here and there: Simultaneous expression of autonomous spatial memories in rats.
        Proc Natl Acad Sci U S A. 1998; 95: 11493-11498
        • Kelemen E.
        • Fenton A.A.
        Dynamic grouping of hippocampal neural activity during cognitive control of two spatial frames.
        PLoS Biol. 2010; 8: e1000403
        • Bruce C.
        • Desimone R.
        • Gross C.G.
        Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque.
        J Neurophysiol. 1981; 46: 369-384
        • Quiroga R.Q.
        • Reddy L.
        • Kreiman G.
        • Koch C.
        • Fried I.
        Invariant visual representation by single neurons in the human brain.
        Nature. 2005; 435: 1102-1107
        • Muller R.
        A quarter of a century of place cells.
        Neuron. 1996; 17: 813-822
        • Cerf M.
        • Thiruvengadam N.
        • Mormann F.
        • Kraskov A.
        • Quiroga R.Q.
        • Koch C.
        • Fried I.
        On-line, voluntary control of human temporal lobe neurons.
        Nature. 2010; 467: 1104-1108
        • Kelemen E.
        • Fenton A.A.
        The Organization of Neuronal Discharge on Timescales of Milliseconds and Seconds Is Related to the Spatial Response Properties of Hippocampal Neurons.
        1st ed. Springer-Verlag, New York2012
        • Kelemen E.
        • Fenton A.A.
        Key features of human episodic recollection in the cross-episode retrieval of rat hippocampus representations of space.
        PLoS Biol. 2013; 11: e1001607
        • von der Malsburg C.
        The correlation theory of brain function (MPI Biophysical Chemistry, internal report 81-82, 1981).
        in: Domany E. van Hemmen J.L. Schulten K. Models of Neural Networks II. Springer, Berlin1994
        • Hebb D.O.
        The Organization of Behavior, a Neuropsychological Theory.
        Wiley, New York1949
        • Park E.
        • Dvorak D.
        • Fenton A.A.
        Ensemble place codes in hippocampus: CA1, CA3, and dentate gyrus place cells have multiple place fields in large environments.
        PLoS One. 2011; 6: e22349
        • Fenton A.A.
        • Kao H.-Y.
        • Neymotin S.A.
        • Olypher A.V.
        • Vayntrub Y.
        • Lytton W.W.
        • Ludvig N.
        Unmasking the CA1 ensemble place code by exposures to small and large environments: More place cells and multiple, irregularly-arranged, and expanded place fields in the larger space.
        J Neurosci. 2008; 28: 11250-11262
        • Panagiotaropoulos T.I.
        • Deco G.
        • Kapoor V.
        • Logothetis N.K.
        Neuronal discharges and gamma oscillations explicitly reflect visual consciousness in the lateral prefrontal cortex.
        Neuron. 2012; 74: 924-935
        • Fukushima M.
        • Saunders R.C.
        • Leopold D.A.
        • Mishkin M.
        • Averbeck B.B.
        Spontaneous high-gamma band activity reflects functional organization of auditory cortex in the awake macaque.
        Neuron. 2012; 74: 899-910
        • Reynolds J.H.
        • Chelazzi L.
        • Desimone R.
        Competitive mechanisms subserve attention in macaque areas V2 and V4.
        J Neurosci. 1999; 19: 1736-1753
        • Zhang K.
        Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: A theory.
        J Neurosci. 1996; 16: 2112-2126
        • Samsonovich A.
        • McNaughton B.L.
        Path integration and cognitive mapping in a continuous attractor neural network model.
        J Neurosci. 1997; 17: 5900-5920
        • McNaughton B.L.
        • Battaglia F.P.
        • Jensen O.
        • Moser E.I.
        • Moser M.B.
        Path integration and the neural basis of the ‘cognitive map’.
        Nat Rev Neurosci. 2006; 7: 663-678
        • Buzsaki G.
        • Anastassiou C.A.
        • Koch C.
        The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes.
        Nat Rev Neurosci. 2012; 13: 407-420
        • Traub R.D.
        • Miles R.
        • Wong R.K.
        Model of the origin of rhythmic population oscillations in the hippocampal slice.
        Science. 1989; 243: 1319-1325
        • Brazhnik E.
        • Borgnis R.
        • Muller R.U.
        • Fox S.E.
        The effects on place cells of local scopolamine dialysis are mimicked by a mixture of two specific muscarinic antagonists.
        J Neurosci. 2004; 24: 9313-9323
        • Antkowiak B.
        • Hentschke H.
        Cellular mechanisms of gamma rhythms in rat neocortical brain slices probed by the volatile anaesthetic isoflurane.
        Neurosci Lett. 1997; 231: 87-90
        • Jefferys J.G.
        • Traub R.D.
        • Whittington M.A.
        Neuronal networks for induced ‘40 Hz’ rhythms.
        Trends Neurosci. 1996; 19: 202-208
        • Traub R.D.
        • Whittington M.A.
        • Colling S.B.
        • Buzsaki G.
        • Jefferys J.G.
        Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo.
        J Physiol. 1996; 493: 471-484
        • Whittington M.A.
        • Traub R.D.
        • Jefferys J.G.
        Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation.
        Nature. 1995; 373: 612-615
        • Cardin J.A.
        • Carlen M.
        • Meletis K.
        • Knoblich U.
        • Zhang F.
        • Deisseroth K.
        • et al.
        Driving fast-spiking cells induces gamma rhythm and controls sensory responses.
        Nature. 2009; 459: 663-667
        • Daoudal G.
        • Hanada Y.
        • Debanne D.
        Bidirectional plasticity of excitatory postsynaptic potential (EPSP)-spike coupling in CA1 hippocampal pyramidal neurons.
        Proc Natl Acad Sci U S A. 2002; 99: 14512-14517
        • Buzsaki G.
        Feed-forward inhibition in the hippocampal formation.
        Prog Neurobiol. 1984; 22: 131-153
        • Buzsaki G.
        • Eidelberg E.
        Phase relations of hippocampal projection cells and interneurons to theta activity in the anesthetized rat.
        Brain Res. 1983; 266: 334-339
        • Fox S.E.
        Membrane potential and impedance changes in hippocampal pyramidal cells during theta rhythm.
        Exp Brain Res. 1989; 77: 283-294
        • Ylinen A.
        • Soltesz I.
        • Bragin A.
        • Penttonen M.
        • Sik A.
        • Buzsaki G.
        Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells.
        Hippocampus. 1995; 5: 78-90
        • Lubenov E.V.
        • Siapas A.G.
        Hippocampal theta oscillations are travelling waves.
        Nature. 2009; 459: 534-539
        • Agarwal G.
        • Stevenson I.H.
        • Berenyi A.
        • Mizuseki K.
        • Buzsaki G.
        • Sommer F.T.
        Spatially distributed local fields in the hippocampus encode rat position.
        Science. 2014; 344: 626-630
        • Siapas A.G.
        • Lubenov E.V.
        • Wilson M.A.
        Prefrontal phase locking to hippocampal theta oscillations.
        Neuron. 2005; 46: 141-151
        • Jones M.W.
        • Wilson M.A.
        Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task.
        PLoS Biol. 2005; 3: e402
        • Uhlhaas P.J.
        • Linden D.E.
        • Singer W.
        • Haenschel C.
        • Lindner M.
        • Maurer K.
        • Rodriguez E.
        Dysfunctional long-range coordination of neural activity during Gestalt perception in schizophrenia.
        J Neurosci. 2006; 26: 8168-8175
        • Verwer R.W.
        • Meijer R.J.
        • Van Uum H.F.
        • Witter M.P.
        Collateral projections from the rat hippocampal formation to the lateral and medial prefrontal cortex.
        Hippocampus. 1997; 7: 397-402
        • Burwell R.D.
        • Witter M.P.
        Basic Anatomy of the Parahippocampal Region in Monkeys and Rats.
        Oxford University Press, New York2002
        • Adhikari A.
        • Topiwala M.A.
        • Gordon J.A.
        Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety.
        Neuron. 2010; 65: 257-269
        • Lubenov E.V.
        • Siapas A.G.
        Decoupling through synchrony in neuronal circuits with propagation delays.
        Neuron. 2008; 58: 118-131
        • Siapas A.G.
        • Wilson M.A.
        Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep.
        Neuron. 1998; 21: 1123-1128
        • Schroeder C.E.
        • Lakatos P.
        The gamma oscillation: Master or slave?.
        Brain Topogr. 2009; 22: 24-26
        • Jones M.W.
        • Wilson M.A.
        Phase precession of medial prefrontal cortical activity relative to the hippocampal theta rhythm.
        Hippocampus. 2005; 15: 867-873
        • Buzsaki G.
        • Eidelberg E.
        Convergence of associational and commissural pathways on CA1 pyramidal cells of the rat hippocampus.
        Brain Res. 1982; 237: 283-295
        • Wesierska M.
        • Dockery C.
        • Fenton A.A.
        Beyond memory, navigation, and inhibition: Behavioral evidence for hippocampus-dependent cognitive coordination in the rat.
        J Neurosci. 2005; 25: 2413-2419
        • Robbe D.
        • Buzsaki G.
        Alteration of theta timescale dynamics of hippocampal place cells by a cannabinoid is associated with memory impairment.
        J Neurosci. 2009; 29: 12597-12605
        • Robbe D.
        • Montgomery S.M.
        • Thome A.
        • Rueda-Orozco P.E.
        • McNaughton B.L.
        • Buzsaki G.
        Cannabinoids reveal importance of spike timing coordination in hippocampal function.
        Nat Neurosci. 2006; 9: 1526-1533
        • Harris K.D.
        • Csicsvari J.
        • Hirase H.
        • Dragoi G.
        • Buzsaki G.
        Organization of cell assemblies in the hippocampus.
        Nature. 2003; 424: 552-556
        • Skaggs W.E.
        • McNaughton B.L.
        • Wilson M.A.
        • Barnes C.A.
        Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences.
        Hippocampus. 1996; 6: 149-172
        • Dragoi G.
        • Buzsaki G.
        Temporal encoding of place sequences by hippocampal cell assemblies.
        Neuron. 2006; 50: 145-157
        • Kucewicz M.T.
        • Tricklebank M.D.
        • Bogacz R.
        • Jones M.W.
        Dysfunctional prefrontal cortical network activity and interactions following cannabinoid receptor activation.
        J Neurosci. 2011; 31: 15560-15568
        • Katona I.
        • Sperlagh B.
        • Sik A.
        • Kafalvi A.
        • Vizi E.S.
        • Mackie K.
        • Freund T.F.
        Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons.
        J Neurosci. 1999; 19: 4544-4558
        • Katona I.
        • Rancz E.A.
        • Acsady L.
        • Ledent C.
        • Mackie K.
        • Hajos N.
        • Freund T.F.
        Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission.
        J Neurosci. 2001; 21: 9506-9518
        • Karson M.A.
        • Tang A.H.
        • Milner T.A.
        • Alger B.E.
        Synaptic cross talk between perisomatic-targeting interneuron classes expressing cholecystokinin and parvalbumin in hippocampus.
        J Neurosci. 2009; 29: 4140-4154
        • Reich C.G.
        • Karson M.A.
        • Karnup S.V.
        • Jones L.M.
        • Alger B.E.
        Regulation of IPSP theta rhythm by muscarinic receptors and endocannabinoids in hippocampus.
        J Neurophysiol. 2005; 94: 4290-4299
        • Katona I.
        • Freund T.F.
        Endocannabinoid signaling as a synaptic circuit breaker in neurological disease.
        Nat Med. 2008; 14: 923-930
        • Gandal M.J.
        • Edgar J.C.
        • Klook K.
        • Siegel S.J.
        Gamma synchrony: Towards a translational biomarker for the treatment-resistant symptoms of schizophrenia.
        Neuropharmacology. 2012; 62: 1504-1518
        • Javitt D.C.
        • Jotkowitz A.
        • Sircar R.
        • Zukin S.R.
        Non-competitive regulation of phencyclidine/sigma-receptors by the N-methyl-D-aspartate receptor antagonist D-(-)-2-amino-5-phosphonovaleric acid.
        Neurosci Lett. 1987; 78: 193-198
        • Anis N.A.
        • Berry S.C.
        • Burton N.R.
        • Lodge D.
        The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate.
        Br J Pharmacol. 1983; 79: 565-575
        • Cohen B.D.
        • Rosenbaum G.
        • Luby E.D.
        • Gottlieb J.S.
        Comparison of phencyclidine hydrochloride (Sernyl) with other drugs. Simulation of schizophrenic performance with phencyclidine hydrochloride (Sernyl), lysergic acid diethylamide (LSD-25), and amobarbital (Amytal) sodium; II. Symbolic and sequential thinking.
        Arch Gen Psychiatry. 1962; 6: 395-401
        • Itil T.
        • Keskiner A.
        • Kiremitci N.
        • Holden J.M.
        Effect of phencyclidine in chronic schizophrenics.
        Can Psychiatr Assoc J. 1967; 12: 209-212
        • Abbott A.
        Schizophrenia: The drug deadlock.
        Nature. 2010; 468: 158-159
        • Carter C.S.
        • Barch D.M.
        Cognitive neuroscience-based approaches to measuring and improving treatment effects on cognition in schizophrenia: The CNTRICS initiative.
        Schizophr Bull. 2007; 33: 1131-1137
        • Lakatos P.
        • Schroeder C.E.
        • Leitman D.I.
        • Javitt D.C.
        Predictive suppression of cortical excitability and its deficit in schizophrenia.
        J Neurosci. 2013; 33: 11692-11702
        • Palmer B.W.
        • Heaton R.K.
        • Paulsen J.S.
        • Kuck J.
        • Braff D.
        • Harris M.J.
        • et al.
        Is it possible to be schizophrenic yet neuropsychologically normal?.
        Neuropsychology. 1997; 11: 437-446
        • Morice R.
        • Delahunty A.
        Frontal/executive impairments in schizophrenia.
        Schizophr Bull. 1996; 22: 125-137
        • Lewis D.A.
        • Gonzalez-Burgos G.
        Pathophysiologically based treatment interventions in schizophrenia.
        Nat Med. 2006; 12: 1016-1022
        • Breier A.
        • Malhotra A.K.
        • Pinals D.A.
        • Weisenfeld N.I.
        • Pickar D.
        Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers.
        Am J Psychiatry. 1997; 154: 805-811
        • Vollenweider F.X.
        • Leenders K.L.
        • Scharfetter C.
        • Antonini A.
        • Maguire P.
        • Missimer J.
        • Angst J.
        Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18F]fluorodeoxyglucose (FDG).
        Eur Neuropsychopharmacol. 1997; 7: 9-24
        • Holcomb H.H.
        • Lahti A.C.
        • Medoff D.R.
        • Cullen T.
        • Tamminga C.A.
        Effects of noncompetitive NMDA receptor blockade on anterior cingulate cerebral blood flow in volunteers with schizophrenia.
        Neuropsychopharmacology. 2005; 30: 2275-2282
        • Rowland L.M.
        • Bustillo J.R.
        • Mullins P.G.
        • Jung R.E.
        • Lenroot R.
        • Landgraf E.
        • et al.
        Effects of ketamine on anterior cingulate glutamate metabolism in healthy humans: A 4-T proton MRS study.
        Am J Psychiatry. 2005; 162: 394-396
        • Homayoun H.
        • Moghaddam B.
        NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons.
        J Neurosci. 2007; 27: 11496-11500
        • Jackson M.E.
        • Homayoun H.
        • Moghaddam B.
        NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex.
        Proc Natl Acad Sci U S A. 2004; 101: 8467-8472
        • Wood J.
        • Kim Y.
        • Moghaddam B.
        Disruption of prefrontal cortex large scale neuronal activity by different classes of psychotomimetic drugs.
        J Neurosci. 2012; 32: 3022-3031
        • Dvorak D.
        • Fenton A.A.
        Toward a proper estimation of phase-amplitude coupling in neural oscillations.
        J Neurosci Methods. 2014; 225C: 42-56
        • Belluscio M.A.
        • Mizuseki K.
        • Schmidt R.
        • Kempter R.
        • Buzsaki G.
        Cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus.
        J Neurosci. 2012; 32: 423-435
        • Ray S.
        • Maunsell J.H.
        Different origins of gamma rhythm and high-gamma activity in macaque visual cortex.
        PLoS Biol. 2011; 9: e1000610
        • Phillips K.G.
        • Cotel M.C.
        • McCarthy A.P.
        • Edgar D.M.
        • Tricklebank M.
        • O’Neill M.J.
        • et al.
        Differential effects of NMDA antagonists on high frequency and gamma EEG oscillations in a neurodevelopmental model of schizophrenia.
        Neuropharmacology. 2012; 62: 1359-1370
        • Kuang H.
        • Lin L.
        • Tsien J.Z.
        Temporal dynamics of distinct CA1 cell populations during unconscious state induced by ketamine.
        PLoS One. 2010; 5: e15209
        • Klausberger T.
        • Somogyi P.
        Neuronal diversity and temporal dynamics: The unity of hippocampal circuit operations.
        Science. 2008; 321: 53-57
        • Somogyi P.
        • Klausberger T.
        Defined types of cortical interneurone structure space and spike timing in the hippocampus.
        J Physiol. 2005; 562: 9-26
        • Klausberger T.
        • Magill P.J.
        • Marton L.F.
        • Roberts J.D.
        • Cobden P.M.
        • Buzsaki G.
        • Somogyi P.
        Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo.
        Nature. 2003; 421: 844-848
        • Lasztoczi B.
        • Klausberger T.
        Layer-specific GABAergic control of distinct gamma oscillations in the CA1 hippocampus.
        Neuron. 2014; 81: 1126-1139
        • Klausberger T.
        GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus.
        Eur J Neurosci. 2009; 30: 947-957
        • Hartwich K.
        • Pollak T.
        • Klausberger T.
        Distinct firing patterns of identified basket and dendrite-targeting interneurons in the prefrontal cortex during hippocampal theta and local spindle oscillations.
        J Neurosci. 2009; 29: 9563-9574
        • Karayiorgou M.
        • Gogos J.A.
        • Galke B.L.
        • Jeffery J.A.
        • Nestadt G.
        • Wolyniec P.S.
        • et al.
        Genotype and phenotype analysis at the 22q11 schizophrenia susceptibility locus.
        Cold Spring Harb Symp Quant Biol. 1996; 61: 835-843
        • Antshel K.M.
        • Aneja A.
        • Strunge L.
        • Peebles J.
        • Fremont W.P.
        • Stallone K.
        • et al.
        Autistic spectrum disorders in velo-cardio facial syndrome (22q11.2 deletion).
        J Autism Dev Disord. 2007; 37: 1776-1786
        • Vorstman J.A.
        • Morcus M.E.
        • Duijff S.N.
        • Klaassen P.W.
        • Heineman-de Boer J.A.
        • Beemer F.A.
        • et al.
        The 22q11.2 deletion in children: High rate of autistic disorders and early onset of psychotic symptoms.
        J Am Acad Child Adolesc Psychiatry. 2006; 45: 1104-1113
        • Karayiorgou M.
        • Gogos J.A.
        The molecular genetics of the 22q11-associated schizophrenia.
        Brain Res Mol Brain Res. 2004; 132: 95-104
        • Sigurdsson T.
        • Stark K.L.
        • Karayiorgou M.
        • Gogos J.A.
        • Gordon J.A.
        Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia.
        Nature. 2010; 464: 763-767
        • Adhikari A.
        • Topiwala M.A.
        • Gordon J.A.
        Single units in the medial prefrontal cortex with anxiety-related firing patterns are preferentially influenced by ventral hippocampal activity.
        Neuron. 2011; 71: 898-910
        • Gonzalez-Burgos G.
        • Hashimoto T.
        • Lewis D.A.
        Alterations of cortical GABA neurons and network oscillations in schizophrenia.
        Curr Psychiatry Rep. 2010; 12: 335-344
        • Lewis D.A.
        • Moghaddam B.
        Cognitive dysfunction in schizophrenia: Convergence of gamma-aminobutyric acid and glutamate alterations.
        Arch Neurol. 2006; 63: 1372-1376
        • Belforte J.E.
        • Zsiros V.
        • Sklar E.R.
        • Jiang Z.
        • Yu G.
        • Li Y.
        • et al.
        Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes.
        Nat Neurosci. 2010; 13: 76-83
        • Nakao K.
        • Nakazawa K.
        Brain state-dependent abnormal LFP activity in the auditory cortex of a schizophrenia mouse model.
        Front Neurosci. 2014; 8: 168
        • Gerber D.J.
        • Hall D.
        • Miyakawa T.
        • Demars S.
        • Gogos J.A.
        • Karayiorgou M.
        • Tonegawa S.
        Evidence for association of schizophrenia with genetic variation in the 8p21.3 gene, PPP3CC, encoding the calcineurin gamma subunit.
        Proc Natl Acad Sci U S A. 2003; 100: 8993-8998
        • Zeng H.
        • Chattarji S.
        • Barbarosie M.
        • Rondi-Reig L.
        • Philpot B.D.
        • Miyakawa T.
        • et al.
        Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory.
        Cell. 2001; 107: 617-629
        • Miyakawa T.
        • Leiter L.M.
        • Gerber D.J.
        • Gainetdinov R.R.
        • Sotnikova T.D.
        • Zeng H.
        • et al.
        Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophrenia.
        Proc Natl Acad Sci U S A. 2003; 100: 8987-8992
        • Behrens C.J.
        • van den Boom L.P.
        • de Hoz L.
        • Friedman A.
        • Heinemann U.
        Induction of sharp wave-ripple complexes in vitro and reorganization of hippocampal networks.
        Nat Neurosci. 2005; 8: 1560-1567
        • Suh J.
        • Foster D.J.
        • Davoudi H.
        • Wilson M.A.
        • Tonegawa S.
        Impaired hippocampal ripple-associated replay in a mouse model of schizophrenia.
        Neuron. 2013; 80: 484-493
        • Gardner R.J.
        • Kersante F.
        • Jones M.W.
        • Bartsch U.
        Neural oscillations during non-rapid eye movement sleep as biomarkers of circuit dysfunction in schizophrenia.
        Eur J Neurosci. 2014; 39: 1091-1106
        • Csicsvari J.
        • O’Neill J.
        • Allen K.
        • Senior T.
        Place-selective firing contributes to the reverse-order reactivation of CA1 pyramidal cells during sharp waves in open-field exploration.
        Eur J Neurosci. 2007; 26: 704-716
        • Foster D.J.
        • Wilson M.A.
        Reverse replay of behavioural sequences in hippocampal place cells during the awake state.
        Nature. 2006; 440: 680-683
        • Buzsaki G.
        Memory consolidation during sleep: A neurophysiological perspective.
        J Sleep Res. 1998; 7: 17-23
        • Singer A.C.
        • Carr M.F.
        • Karlsson M.P.
        • Frank L.M.
        Hippocampal SWR activity predicts correct decisions during the initial learning of an alternation task.
        Neuron. 2013; 77: 1163-1173
        • Jadhav S.P.
        • Kemere C.
        • German P.W.
        • Frank L.M.
        Awake hippocampal sharp-wave ripples support spatial memory.
        Science. 2012; 336: 1454-1458
        • Insel T.R.
        Rethinking schizophrenia.
        Nature. 2010; 468: 187-193
        • Lewis D.A.
        • Gonzalez-Burgos G.
        Neuroplasticity of neocortical circuits in schizophrenia.
        Neuropsychopharmacology. 2008; 33: 141-165
        • Subramaniam K.
        • Luks T.L.
        • Fisher M.
        • Simpson G.V.
        • Nagarajan S.
        • Vinogradov S.
        Computerized cognitive training restores neural activity within the reality monitoring network in schizophrenia.
        Neuron. 2012; 73: 842-853
        • Lee H.
        • Dvorak D.
        • Kao H.Y.
        • Duffy A.M.
        • Scharfman H.E.
        • Fenton A.A.
        Early cognitive experience prevents adult deficits in a neurodevelopmental schizophrenia model.
        Neuron. 2012; 75: 714-724
        • Anguera J.A.
        • Boccanfuso J.
        • Rintoul J.L.
        • Al-Hashimi O.
        • Faraji F.
        • Janowich J.
        • et al.
        Video game training enhances cognitive control in older adults.
        Nature. 2013; 501: 97-101
        • Javitt D.C.
        • Spencer K.M.
        • Thaker G.K.
        • Winterer G.
        • Hajos M.
        Neurophysiological biomarkers for drug development in schizophrenia.
        Nat Rev Drug Discov. 2008; 7: 68-83
        • Luck S.J.
        • Mathalon D.H.
        • O’Donnell B.F.
        • Hamalainen M.S.
        • Spencer K.M.
        • Javitt D.C.
        • Uhlhaas P.J.
        A roadmap for the development and validation of event-related potential biomarkers in schizophrenia research.
        Biol Psychiatry. 2011; 70: 28-34