Advertisement

The Human Model: Changing Focus on Autism Research

  • Alysson Renato Muotri
    Correspondence
    Address correspondence to Alysson Renato Muotri, Ph.D., University of California San Diego, Department of Pediatrics/Rady Children’s Hospital San Diego, School of Medicine, Department of Cellular and Molecular Medicine, Stem Cell Program, La Jolla, CA 92093.
    Affiliations
    Department of Pediatrics/Rady Children’s Hospital San Diego, University of California San Diego, La Jolla, California.
    Search for articles by this author

      Abstract

      The lack of live human brain cells for research has slowed progress toward understanding the mechanisms underlying autism spectrum disorders. A human model using reprogrammed patient somatic cells offers an attractive alternative, as it captures a patient’s genome in relevant cell types. Despite the current limitations, the disease-in-a-dish approach allows for progressive time course analyses of target cells, offering a unique opportunity to investigate the cellular and molecular alterations before symptomatic onset. Understanding the current drawbacks of this model is essential for the correct data interpretation and extrapolation of conclusions applicable to the human brain. Innovative strategies for collecting biological material and clinical information from large patient cohorts are important for increasing the statistical power that will allow for the extraction of information from the noise resulting from the variability introduced by reprogramming and differentiation methods. Working with large patient cohorts is also important for understanding how brain cells derived from diverse human genetic backgrounds respond to specific drugs, creating the possibility of personalized medicine for autism spectrum disorders.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wing L.
        • Gould J.
        Severe impairments of social interaction and associated abnormalities in children: Epidemiology and classification.
        J Autism Dev Disord. 1979; 9: 11-29
        • Piven J.
        • Palmer P.
        • Jacobi D.
        • Childress D.
        • Arndt S.
        Broader autism phenotype: Evidence from a family history study of multiple-incidence autism families.
        Am J Psychiatry. 1997; 154: 185-190
        • Ronald A.
        • Happe F.
        • Bolton P.
        • Butcher L.M.
        • Price T.S.
        • Wheelwright S.
        • et al.
        Genetic heterogeneity between the three components of the autism spectrum: A twin study.
        J Am Acad Child Adolesc Psychiatry. 2006; 45: 691-699
        • Garber K.
        Neuroscience. Autism’s cause may reside in abnormalities at the synapse.
        Science. 2007; 317: 190-191
        • Marchetto M.C.
        • Carromeu C.
        • Acab A.
        • Yu D.
        • Yeo G.W.
        • Mu Y.
        • et al.
        A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells.
        Cell. 2010; 143: 527-539
        • Sanders S.J.
        • Murtha M.T.
        • Gupta A.R.
        • Murdoch J.D.
        • Raubeson M.J.
        • Willsey A.J.
        • et al.
        De novo mutations revealed by whole-exome sequencing are strongly associated with autism.
        Nature. 485. 2012: 237-241
        • Cook Jr, E.H.
        • Scherer S.W.
        Copy-number variations associated with neuropsychiatric conditions.
        Nature. 2008; 455: 919-923
        • Sebat J.
        • Lakshmi B.
        • Malhotra D.
        • Troge J.
        • Lese-Martin C.
        • Walsh T.
        • et al.
        Strong association of de novo copy number mutations with autism.
        Science. 316. 2007: 445-449
        • Glessner J.T.
        • Wang K.
        • Cai G.
        • Korvatska O.
        • Kim C.E.
        • Wood S.
        • et al.
        Autism genome-wide copy number variation reveals ubiquitin and neuronal genes.
        Nature. 2009; 459: 569-573
        • Pinto D.
        • Pagnamenta A.T.
        • Klei L.
        • Anney R.
        • Merico D.
        • Regan R.
        • et al.
        Functional impact of global rare copy number variation in autism spectrum disorders.
        Nature. 2010; 466: 368-372
        • Parikshak N.N.
        • Luo R.
        • Zhang A.
        • Won H.
        • Lowe J.K.
        • Chandran V.
        • et al.
        Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism.
        Cell. 2013; 155: 1008-1021
        • Willsey A.J.
        • Sanders S.J.
        • Li M.
        • Dong S.
        • Tebbenkamp A.T.
        • Muhle R.A.
        • et al.
        Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism.
        Cell. 2013; 155: 997-1007
        • Stoner R.
        • Chow M.L.
        • Boyle M.P.
        • Sunkin S.M.
        • Mouton P.R.
        • Roy S.
        • et al.
        Patches of disorganization in the neocortex of children with autism.
        N Engl J Med. 2014; 370: 1209-1219
        • Courchesne E.
        • Campbell K.
        • Solso S.
        Brain growth across the life span in autism: Age-specific changes in anatomical pathology.
        Brain Res. 1380. 2011: 138-145
        • Courchesne E.
        • Redcay E.
        • Morgan J.T.
        • Kennedy D.P.
        Autism at the beginning: Microstructural and growth abnormalities underlying the cognitive and behavioral phenotype of autism.
        Dev Psychopathol. 2005; 17: 577-597
        • Hazlett H.C.
        • Poe M.D.
        • Gerig G.
        • Styner M.
        • Chappell C.
        • Smith R.G.
        • et al.
        Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years.
        Arch Gen Psychiatry. 68. 2011: 467-476
        • Courchesne E.
        • Karns C.M.
        • Davis H.R.
        • Ziccardi R.
        • Carper R.A.
        • Tigue Z.D.
        • et al.
        Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study.
        Neurology. 2001; 57: 245-254
        • Courchesne E.
        • Carper R.
        • Akshoomoff N.
        Evidence of brain overgrowth in the first year of life in autism.
        JAMA. 2003; 290: 337-344
        • Shen M.D.
        • Nordahl C.W.
        • Young G.S.
        • Wootton-Gorges S.L.
        • Lee A.
        • Liston S.E.
        • et al.
        Early brain enlargement and elevated extra-axial fluid in infants who develop autism spectrum disorder.
        Brain. 136. 2013: 2825-2835
        • Carper R.A.
        • Moses P.
        • Tigue Z.D.
        • Courchesne E.
        Cerebral lobes in autism: Early hyperplasia and abnormal age effects.
        Neuroimage. 2002; 16: 1038-1051
        • Sparks B.F.
        • Friedman S.D.
        • Shaw D.W.
        • Aylward E.H.
        • Echelard D.
        • Artru A.A.
        • et al.
        Brain structural abnormalities in young children with autism spectrum disorder.
        Neurology. 2002; 59: 184-192
        • Hazlett H.C.
        • Poe M.
        • Gerig G.
        • Smith R.G.
        • Provenzale J.
        • Ross A.
        • et al.
        Magnetic resonance imaging and head circumference study of brain size in autism: Birth through age 2 years.
        Arch Gen Psychiatry. 2005; 62: 1366-1376
        • Kemper T.L.
        • Bauman M.
        Neuropathology of infantile autism.
        J Neuropathol Exp Neurol. 1998; 57: 645-652
        • Courchesne E.
        • Mouton P.R.
        • Calhoun M.E.
        • Semendeferi K.
        • Ahrens-Barbeau C.
        • Hallet M.J.
        • et al.
        Neuron number and size in prefrontal cortex of children with autism.
        JAMA. 2011; 306: 2001-2010
        • Morgan J.T.
        • Chana G.
        • Abramson I.
        • Semendeferi K.
        • Courchesne E.
        • Everall I.P.
        Abnormal microglial-neuronal spatial organization in the dorsolateral prefrontal cortex in autism.
        Brain Res. 2012; 1456: 72-81
        • Hertz-Picciotto I.
        • Delwiche L.
        The rise in autism and the role of age at diagnosis.
        Epidemiology. 2009; 20: 84-90
        • King M.
        • Bearman P.
        Diagnostic change and the increased prevalence of autism.
        Int J Epidemiol. 2009; 38: 1224-1234
        • Myers S.M.
        • Johnson C.P.
        • American Academy of Pediatrics Council on Children With Disabilities
        Management of children with autism spectrum disorders.
        Pediatrics. 2007; 120: 1162-1182
        • Warren Z.
        • McPheeters M.L.
        • Sathe N.
        • Foss-Feig J.H.
        • Glasser A.
        • Veenstra-Vanderweele J.
        A systematic review of early intensive intervention for autism spectrum disorders.
        Pediatrics. 2011; 127: e1303-e1311
        • Buescher A.V.
        • Cidav Z.
        • Knapp M.
        • Mandell D.S.
        Costs of autism spectrum disorders in the United Kingdom and the United States.
        JAMA Pediatr. 2014; 168: 721-728
        • Bruder M.B.
        • Kerins G.
        • Mazzarella C.
        • Sims J.
        • Stein N.
        Brief report: The medical care of adults with autism spectrum disorders: Identifying the needs.
        J Autism Dev Disord. 2012; 42: 2498-2904
        • Kogan M.D.
        • Strickland B.B.
        • Blumberg S.J.
        • Singh G.K.
        • Perrin J.M.
        • van Dyck P.C.
        A national profile of the health care experiences and family impact of autism spectrum disorder among children in the United States, 2005-2006.
        Pediatrics. 2008; 122: e1149-e1158
        • Miller J.A.
        • Ding S.L.
        • Sunkin S.M.
        • Smith K.A.
        • Ng L.
        • Szafer A.
        • et al.
        Transcriptional landscape of the prenatal human brain.
        Nature. 2014; 508: 199-206
        • Konopka G.
        • Friedrich T.
        • Davis-Turak J.
        • Winden K.
        • Oldham M.C.
        • Gao F.
        • et al.
        Human-specific transcriptional networks in the brain.
        Neuron. 2012; 75: 601-617
        • Yuen R.K.
        • Thiruvahindrapuram B.
        • Merico D.
        • Walker S.
        • Tammimies K.
        • Hoang N.
        • et al.
        Whole-genome sequencing of quartet families with autism spectrum disorder.
        Nat Med. 2015; 21: 185-191
        • Iossifov I.
        • O’Roak B.J.
        • Sanders S.J.
        • Ronemus M.
        • Krumm N.
        • Levy D.
        • et al.
        The contribution of de novo coding mutations to autism spectrum disorder.
        Nature. 2014; 515: 216-221
        • Konopka G.
        • Wexler E.
        • Rosen E.
        • Mukamel Z.
        • Osborn G.E.
        • Chen L.
        • et al.
        Modeling the functional genomics of autism using human neurons.
        Mol Psychiatry. 2012; 17: 202-214
        • Stein J.L.
        • de la Torre-Ubieta L.
        • Tian Y.
        • Parikshak N.N.
        • Hernandez I.A.
        • Marchetto M.C.
        • et al.
        A quantitative framework to evaluate modeling of cortical development by neural stem cells.
        Neuron. 2014; 83: 69-86
        • Geerts H.
        Of mice and men: Bridging the translational disconnect in CNS drug discovery.
        CNS Drugs. 23. 2009: 915-926
        • Seok J.
        • Warren H.S.
        • Cuenca A.G.
        • Mindrinos M.N.
        • Baker H.V.
        • Xu W.
        • et al.
        Genomic responses in mouse models poorly mimic human inflammatory diseases.
        Proc Natl Acad Sci U S A. 2013; 110: 3507-3512
        • DeFelipe J.
        • Alonso-Nanclares L.
        • Arellano J.I.
        Microstructure of the neocortex: Comparative aspects.
        J Neurocytol. 2002; 31: 299-316
        • Silverman J.L.
        • Yang M.
        • Lord C.
        • Crawley J.N.
        Behavioural phenotyping assays for mouse models of autism.
        Nat Rev Neurosci. 2010; 11: 490-502
        • Bauman M.D.
        • Iosif A.M.
        • Ashwood P.
        • Braunschweig D.
        • Lee A.
        • Schumann C.M.
        • et al.
        Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey.
        Transl Psychiatry. 2013; 3: e278
        • Liu H.
        • Chen Y.
        • Niu Y.
        • Zhang K.
        • Kang Y.
        • Ge W.
        • et al.
        TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys.
        Cell Stem Cell. 2014; 14: 323-328
        • Liu Z.
        • Zhou X.
        • Zhu Y.
        • Chen Z.F.
        • Yu B.
        • Wang Y.
        • et al.
        Generation of a monkey with MECP2 mutations by TALEN-based gene targeting.
        Neurosci Bull. 2014; 30: 381-386
        • Dragunow M.
        The adult human brain in preclinical drug development.
        Nat Rev Drug Discov. 2008; 7: 659-666
        • Marchetto M.C.
        • Brennand K.J.
        • Boyer L.F.
        • Gage F.H.
        Induced pluripotent stem cells (iPSCs) and neurological disease modeling: Progress and promises.
        Hum Mol Genet. 2011; 20: R109-R115
        • Takahashi K.
        • Yamanaka S.
        Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.
        Cell. 2006; 126: 663-676
        • Yu J.
        • Vodyanik M.A.
        • Smuga-Otto K.
        • Antosiewicz-Bourget J.
        • Frane J.L.
        • Tian S.
        • et al.
        Induced pluripotent stem cell lines derived from human somatic cells.
        Science. 2007; 318: 1917-1920
        • Freitas B.C.
        • Trujillo C.A.
        • Carromeu C.
        • Yusupova M.
        • Herai R.H.
        • Muotri A.R.
        Stem cells and modeling of autism spectrum disorders.
        Exp Neurol. 2012; 260: 33-43
        • Han S.S.
        • Williams L.A.
        • Eggan K.C.
        Constructing and deconstructing stem cell models of neurological disease.
        Neuron. 2011; 70: 626-644
        • Beltrao-Braga P.C.
        • Pignatari G.C.
        • Russo F.B.
        • Fernandes I.R.
        • Muotri A.R.
        In-a-dish: Induced pluripotent stem cells as a novel model for human diseases.
        Cytometry A. 2013; 83: 11-17
        • Kim J.E.
        • O’Sullivan M.L.
        • Sanchez C.A.
        • Hwang M.
        • Israel M.A.
        • Brennand K.
        • et al.
        Investigating synapse formation and function using human pluripotent stem cell-derived neurons.
        Proc Natl Acad Sci U S A. 2011; 108: 3005-3010
        • Griesi-Oliveira K.
        • Acab A.
        • Gupta A.R.
        • Sunaga D.Y.
        • Chailangkarn T.
        • Nicol X.
        • et al.
        Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons.
        Mol Psychiatry. 2015; 20: 1350-1365
        • Mitne-Neto M.
        • Machado-Costa M.
        • Marchetto M.C.
        • Bengtson M.H.
        • Joazeiro C.A.
        • Tsuda H.
        • et al.
        Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients.
        Hum Mol Genet. 2011; 20: 3642-3652
        • Muguruma K.
        • Nishiyama A.
        • Kawakami H.
        • Hashimoto K.
        • Sasai Y.
        Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells.
        Cell Rep. 2015; 14: 1104-1108
        • Cunningham M.
        • Cho J.H.
        • Leung A.
        • Savvidis G.
        • Ahn S.
        • Moon M.
        • et al.
        hPSC-derived maturing GABAergic interneurons ameliorate seizures and abnormal behavior in epileptic mice.
        Cell Stem Cell. 2014; 15: 559-573
        • Kim T.G.
        • Yao R.
        • Monnell T.
        • Cho J.H.
        • Vasudevan A.
        • Koh A.
        • et al.
        Efficient specification of interneurons from human pluripotent stem cells by dorsoventral and rostrocaudal modulation.
        Stem Cells. 2014; 32: 1789-1804
        • Chen H.
        • Qian K.
        • Chen W.
        • Hu B.
        • Blackbourn 4th, L.W.
        • Du Z.
        • et al.
        Human-derived neural progenitors functionally replace astrocytes in adult mice.
        J Clin Invest. 2015; 125: 1033-1042
        • Zeng X.
        • Cai J.
        • Chen J.
        • Luo Y.
        • You Z.B.
        • Fotter E.
        • et al.
        Dopaminergic differentiation of human embryonic stem cells.
        Stem Cells. 2004; 22: 925-940
        • Krencik R.
        • Zhang S.C.
        Directed differentiation of functional astroglial subtypes from human pluripotent stem cells.
        Nat Protoc. 2011; 6: 1710-1717
        • Soldner F.
        • Laganiere J.
        • Cheng A.W.
        • Hockemeyer D.
        • Gao Q.
        • Alagappan R.
        • et al.
        Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations.
        Cell. 2011; 146: 318-331
        • Liu G.H.
        • Suzuki K.
        • Qu J.
        • Sancho-Martinez I.
        • Yi F.
        • Li M.
        • et al.
        Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs.
        Cell Stem Cell. 2011; 8: 688-694
        • Cai X.
        • Evrony G.D.
        • Lehmann H.S.
        • Elhosary P.C.
        • Mehta B.K.
        • Poduri A.
        • Walsh C.A.
        Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain.
        Cell Rep. 2014; 8: 1280-1289
        • Cai M.
        • Yang Y.
        Targeted genome editing tools for disease modeling and gene therapy.
        Curr Gene Ther. 2014; 14: 2-9
        • Cheung A.Y.
        • Horvath L.M.
        • Grafodatskaya D.
        • Pasceri P.
        • Weksberg R.
        • Hotta A.
        • et al.
        Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation.
        Hum Mol Genet. 2011; 20: 2103-2115
        • Mekhoubad S.
        • Bock C.
        • de Boer A.S.
        • Kiskinis E.
        • Meissner A.
        • Eggan K.
        Erosion of dosage compensation impacts human iPSC disease modeling.
        Cell Stem Cell. 2012; 10: 595-609
        • Rao M.
        iPSC crowdsourcing: A model for obtaining large panels of stem cell lines for screening.
        Cell Stem Cell. 2013; 13: 389-391
        • Muotri A.R.
        Inducible pluripotent stem cells in autism spectrum disorders.
        in: Buxbaum J.D. Hof P.R. The Neuroscience of Autism Spectrum Disorders. 1st ed. Elsevier, Oxford, UK2013: 391-400
        • Belichenko P.V.
        • Oldfors A.
        • Hagberg B.
        • Dahlstrom A.
        Rett syndrome: 3-D confocal microscopy of cortical pyramidal dendrites and afferents.
        Neuroreport. 1994; 5: 1509-1513
        • Tropea D.
        • Giacometti E.
        • Wilson N.R.
        • Beard C.
        • McCurry C.
        • Fu D.D.
        • et al.
        Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice.
        Proc Natl Acad Sci U S A. 2009; 106: 2029-2034
        • Ananiev G.
        • Williams E.C.
        • Li H.
        • Chang Q.
        Isogenic pairsof wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model.
        PLoS One. 2011; 6: e25255
        • Kim K.Y.
        • Hysolli E.
        • Park I.H.
        Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome.
        Proc Natl Acad Sci U S A. 2011; 108: 14169-14174
        • Verkerk A.J.
        • Pieretti M.
        • Sutcliffe J.S.
        • Fu Y.H.
        • Kuhl D.P.
        • Pizzuti A.
        • et al.
        Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome.
        Cell. 1991; 65: 905-914
        • Eiges R.
        • Urbach A.
        • Malcov M.
        • Frumkin T.
        • Schwartz T.
        • Amit A.
        • et al.
        Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos.
        Cell Stem Cell. 2007; 1: 568-577
        • Urbach A.
        • Bar-Nur O.
        • Daley G.Q.
        • Benvenisty N.
        Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells.
        Cell Stem Cell. 2010; 6: 407-411
        • Sheridan S.D.
        • Theriault K.M.
        • Reis S.A.
        • Zhou F.
        • Madison J.M.
        • Daheron L.
        • et al.
        Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome.
        PloS One. 2011; 6: e26203
        • Doers M.E.
        • Musser M.T.
        • Nichol R.
        • Berndt E.R.
        • Baker M.
        • Gomez T.M.
        • et al.
        iPSC-derived forebrain neurons from FXS individuals show defects in initial neurite outgrowth.
        Stem Cells Dev. 2014; 23: 1777-1787
        • Splawski I.
        • Timothy K.W.
        • Sharpe L.M.
        • Decher N.
        • Kumar P.
        • Bloise R.
        Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism.
        Cell. 119. 2004: 19-31
        • Krey J.F.
        • Pasca S.P.
        • Shcheglovitov A.
        • Yazawa M.
        • Schwemberger R.
        • Rasmusson R.
        • Dolmetsch R.E.
        Timothy syndrome is associated with activity-dependent dendritic retraction in rodent and human neurons.
        Nat Neurosci. 2013; 16: 201-209
        • Pasca S.P.
        • Portmann T.
        • Voineagu I.
        • Yazawa M.
        • Shcheglovitov A.
        • Pasca A.M.
        • et al.
        Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome.
        Nat Med. 2011; 17: 1657-1662
        • Chanda S.
        • Marro S.
        • Wernig M.
        • Sudhof T.C.
        Neurons generated by direct conversion of fibroblasts reproduce synaptic phenotype caused by autism-associated neuroligin-3 mutation.
        Proc Natl Acad Sci U S A. 2013; 110: 16622-16627
        • Naisbitt S.
        • Kim E.
        • Tu J.C.
        • Xiao B.
        • Sala C.
        • Valtschanoff J.
        • et al.
        Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin.
        Neuron. 23. 1999: 569-582
        • Shcheglovitov A.
        • Shcheglovitova O.
        • Yazawa M.
        • Portmann T.
        • Shu R.
        • Sebastiano V.
        • et al.
        SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients.
        Nature. 503. 2013: 267-271
        • Schroer R.J.
        • Phelan M.C.
        • Michaelis R.C.
        • Crawford E.C.
        • Skinner S.A.
        • Cuccaro M.
        • et al.
        Autism and maternally derived aberrations of chromosome 15q.
        Am J Med Genet. 1998; 76: 327-336
        • Kishino T.
        • Lalande M.
        • Wagstaff J.
        UBE3A/E6-AP mutations cause Angelman syndrome.
        Nat Genet. 1997; 15: 70-73
        • Germain N.D.
        • Chen P.F.
        • Plocik A.M.
        • Glatt-Deeley H.
        • Brown J.
        • Fink J.J.
        • et al.
        Gene expression analyses of human induced pluripotent stem cell-derived neurons carrying copy number variants of chromosome 15q11-q13.1.
        Mol Autism. 2014; 5: 44-62
        • Sanders S.J.
        • Ercan-Sencicek A.G.
        • Hus V.
        • Luo R.
        • Murtha M.T.
        • Moreno-De-Luca D.
        • et al.
        Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism.
        Neuron. 2011; 70: 863-885
        • Adamo A.
        • Atashpaz S.
        • Germain P.L.
        • Zanella M.
        • D’Agostino G.
        • Albertin V.
        • et al.
        7q11.23 dosage-dependent dysregulation in human pluripotent stem cells affects transcriptional programs in disease-relevant lineages.
        Nat Genet. 2015; 47: 132-141
        • Bozdagi O.
        • Sakurai T.
        • Papapetrou D.
        • Wang X.
        • Dickstein D.L.
        • Takahashi N.
        • et al.
        Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication.
        Mol Autism. 2010; 1: 15
        • Gutierrez R.C.
        • Hung J.
        • Zhang Y.
        • Kertesz A.C.
        • Espina F.J.
        • Colicos M.A.
        Altered synchrony and connectivity in neuronal networks expressing an autism-related mutation of neuroligin 3.
        Neuroscience. 2009; 162: 208-221
        • Levy D.
        • Ronemus M.
        • Yamrom B.
        • Lee Y.H.
        • Leotta A.
        • Kendall J.
        • et al.
        Rare de novo and transmitted copy-number variation in autistic spectrum disorders.
        Neuron. 2011; 70: 886-897
        • Gilman S.R.
        • Iossifov I.
        • Levy D.
        • Ronemus M.
        • Wigler M.
        • Vitkup D.
        Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses.
        Neuron. 2011; 70: 898-907
        • El-Fishawy P.
        • State M.W.
        The genetics of autism: Key issues, recent findings, and clinical implications.
        Psychiatr Clin North Am. 2010; 33: 83-105
        • Geschwind D.H.
        Genetics of autism spectrum disorders.
        Trends Cogn Sci. 2011; 15: 409-416
        • Weiss L.A.
        • Shen Y.
        • Korn J.M.
        • Arking D.E.
        • Miller D.T.
        • Fossdal R.
        • et al.
        Association between microdeletion and microduplication at 16p11.2 and autism.
        N Engl J Med. 2008; 358: 667-675
        • Bucan M.
        • Abrahams B.S.
        • Wang K.
        • Glessner J.T.
        • Herman E.I.
        • Sonnenblick L.I.
        • et al.
        Genome-wide analyses of exonic copy number variants in a family-based study point to novel autism susceptibility genes.
        PLoS Genetics. 2009; 5: e1000536
        • State M.W.
        • Levitt P.
        The conundrums of understanding genetic risks for autism spectrum disorders.
        Nat Neurosci. 2011; 14: 1499-1506
        • Beltrao-Braga P.I.
        • Pignatari G.C.
        • Maiorka P.C.
        • Oliveira N.A.
        • Lizier N.F.
        • Wenceslau C.V.
        • et al.
        Feeder-free derivation of induced pluripotent stem cells from human immature dental pulp stem cells.
        Cell Transplant. 2011; 20: 1707-1719
        • Tai Y.
        • Feng S.
        • Ge R.
        • Du W.
        • Zhang X.
        • He Z.
        • Wang Y.
        TRPC6 channels promote dendritic growth via the CaMKIV-CREB pathway.
        J Cell Sci. 2008; 121: 2301-2307
        • Zhou J.
        • Du W.
        • Zhou K.
        • Tai Y.
        • Yao H.
        • Jia Y.
        • et al.
        Critical role of TRPC6 channels in the formation of excitatory synapses.
        Nat Neurosci. 2008; 11: 741-743
        • Greek R.
        • Rice M.J.
        Animal models and conserved processes.
        Theor Biol Med Model. 2012; 9: 40
        • van der Worp H.B.
        • Howells D.W.
        • Sena E.S.
        • Porritt M.J.
        • Rewell S.
        • O’Collins V.
        • Macleod M.R.
        Can animal models of disease reliably inform human studies?.
        PLoS Med. 2010; 7: e1000245
        • Vierbuchen T.
        • Ostermeier A.
        • Pang Z.P.
        • Kokubu Y.
        • Sudhof T.C.
        • Wernig M.
        Direct conversion of fibroblasts to functional neurons by defined factors.
        Nature. 2010; 463: 1035-1041
        • Pang Z.P.
        • Yang N.
        • Vierbuchen T.
        • Ostermeier A.
        • Fuentes D.R.
        • Yang T.Q.
        • et al.
        Induction of human neuronal cells by defined transcription factors.
        Nature. 2011; 476: 220-223
        • Vierbuchen T.
        • Wernig M.
        Direct lineage conversions: Unnatural but useful?.
        Nat Biotechnol. 2011; 29: 892-907
        • Diniz L.P.
        • Almeida J.C.
        • Tortelli V.
        • Vargas Lopes C.
        • Setti-Perdigao P.
        • Stipursky J.
        • et al.
        Astrocyte-induced synaptogenesis is mediated by transforming growth factor beta signaling through modulation of D-serine levels in cerebral cortex neurons.
        J Biol Chem. 2012; 287: 41432-41445
        • Chung W.S.
        • Clarke L.E.
        • Wang G.X.
        • Stafford B.K.
        • Sher A.
        • Chakraborty C.
        • et al.
        Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways.
        Nature. 2013; 504: 394-400
        • Lancaster M.A.
        • Knoblich J.A.
        Organogenesis in a dish: Modeling development and disease using organoid technologies.
        Science. 2014; 345: 1247125
        • Shi Y.
        • Kirwan P.
        • Smith J.
        • Robinson H.P.
        • Livesey F.J.
        Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses.
        Nat Neurosci. 2012; 15: 477-486
        • Huh D.
        • Matthews B.D.
        • Mammoto A.
        • Montoya-Zavala M.
        • Hsin H.Y.
        • Ingber D.E.
        Reconstituting organ-level lung functions on a chip.
        Science. 2010; 328: 1662-1668
        • Shi Y.
        • Kirwan P.
        • Livesey F.J.
        Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks.
        Nat Protoc. 2012; 7: 1836-1846
        • Wainger B.J.
        • Kiskinis E.
        • Mellin C.
        • Wiskow O.
        • Han S.S.
        • Sandoe J.
        • et al.
        Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons.
        Cell Rep. 2014; 7: 1-11