Advertisement

Large-Scale Persistent Network Reconfiguration Induced by Ketamine in Anesthetized Monkeys: Relevance to Mood Disorders

Published:February 28, 2015DOI:https://doi.org/10.1016/j.biopsych.2015.02.028

      Abstract

      Background

      Ketamine is a highly attractive candidate for developing fast-onset antidepressant agents; however, the relevant brain circuits that underlie sustained, efficacious antidepressant effects remain largely unknown.

      Methods

      We used a holistic scheme combining whole-brain resting-state fMRI and graph theoretical analysis to examine the sustained effects on brain networks after administration of a single dose of ketamine and to identify the brain regions and circuits preferentially targeted by ketamine. Topological differences in functional networks of anesthetized macaque monkeys were compared between ketamine (.5 mg/kg) and saline treatment after 18 hours.

      Results

      We observed persistent global reconfiguration of small-world properties in response to ketamine intake, accompanied by large-scale downregulation of functional connectivity, most prominently in the orbital prefrontal cortex, the subgenual and posterior cingulate cortices, and the nucleus accumbens. Intriguingly, intrinsic connectivity with the medial prefrontal areas in the reward circuits were selectively downregulated. Global and regional regulations of the brain networks precisely opposed the maladaptive alterations in the depressed brain.

      Conclusions

      Our results demonstrated that local synaptic plasticity triggered by blockade of N-methyl-D-aspartic acid receptors was capable of translating into prolonged network reconfiguration in the distributed cortico-limbic-striatal circuit, providing mechanistic insight into developing specific loci or circuit-targeted, long-term therapeutics.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Price J.L.
        • Drevets W.C.
        Neurocircuitry of mood disorders.
        Neuropsychopharmacology. 2010; 35: 192-216
        • Sesack S.R.
        • Grace A.A.
        Cortico-basal ganglia reward network: microcircuitry.
        Neuropsychopharmacology. 2010; 35: 27-47
        • Krishnan V.
        • Nestler E.J.
        Linking molecules to mood: new insight into the biology of depression.
        Am J Psychiatry. 2010; 167: 1305-1320
        • Castren E.
        Neuronal network plasticity and recovery from depression.
        JAMA Psychiatry. 2013; 70: 983-989
        • Mayberg H.S.
        • Liotti M.
        • Brannan S.K.
        • McGinnis S.
        • Mahurin R.K.
        • Jerabek P.A.
        • et al.
        Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness.
        Am J Psychiatry. 1999; 156: 675-682
        • Nestler E.J.
        • Carlezon Jr, W.A.
        The mesolimbic dopamine reward circuit in depression.
        Biol Psychiatry. 2006; 59: 1151-1159
        • Duman R.S.
        • Aghajanian G.K.
        Synaptic dysfunction in depression: potential therapeutic targets.
        Science. 2012; 338: 68-72
        • Berman R.M.
        • Cappiello A.
        • Anand A.
        • Oren D.A.
        • Heninger G.R.
        • Charney D.S.
        • et al.
        Antidepressant effects of ketamine in depressed patients.
        Biol Psychiatry. 2000; 47: 351-354
        • Zarate Jr, C.A.
        • Singh J.B.
        • Carlson P.J.
        • Brutsche N.E.
        • Ameli R.
        • Luckenbaugh D.A.
        • et al.
        A randomized trial of an N-methyl-d-aspartate antagonist in treatment-resistant major depression.
        Arch Gen Psychiatry. 2006; 63: 856-864
        • Price R.B.
        • Nock M.K.
        • Charney D.S.
        • Mathew S.J.
        Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression.
        Biol Psychiatry. 2009; 66: 522-526
        • Autry A.E.
        • Adachi M.
        • Nosyreva E.
        • Na E.S.
        • Los M.F.
        • Cheng P.F.
        • et al.
        NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses.
        Nature. 2011; 475: 91-95
        • Li N.
        • Lee B.
        • Liu R.J.
        • Banasr M.
        • Dwyer J.M.
        • Iwata M.
        • et al.
        mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists.
        Science. 2010; 329: 959-964
        • Murrough J.W.
        • Perez A.M.
        • Pillemer S.
        • Stern J.
        • Parides M.K.
        • aan het Rot M.
        • et al.
        Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression.
        Biol Psychiatry. 2013; 74: 250-256
        • Sanacora G.
        • Zarate C.A.
        • Krystal J.H.
        • Manji H.K.
        Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders.
        Nat Rev Drug Discov. 2008; 7: 426-437
        • Zunszain P.A.
        • Horowitz M.A.
        • Cattaneo A.
        • Lupi M.M.
        • Pariante C.M.
        Ketamine: synaptogenesis, immunomodulation and glycogen synthase kinase-3 as underlying mechanisms of its antidepressant properties.
        Mol Psychiatry. 2013; 18: 1236-1241
        • Krystal J.H.
        • Sanacora G.
        • Duman R.S.
        Rapid-acting glutamatergic antidepressants: the path to ketamine and beyond.
        Biol Psychiatry. 2013; 73: 1133-1141
        • Aan Het Rot M.
        • Zarate Jr, C.A.
        • Charney D.S.
        • Mathew S.J.
        Ketamine for depression: where do we go from here?.
        Biol Psychiatry. 2012; 72: 537-547
        • Sinner B.
        • Graf B.M.
        Ketamine.
        Handb Exp Pharmacol. 2008; 182: 313-333
        • Vincent J.L.
        • Patel G.H.
        • Fox M.D.
        • Snyder A.Z.
        • Baker J.T.
        • Van Essen D.C.
        • et al.
        Intrinsic functional architecture in the anaesthetized monkey brain.
        Nature. 2007; 447: 83-86
        • Margulies D.S.
        • Vincent J.L.
        • Kelly C.
        • Lohmann G.
        • Uddin L.Q.
        • Biswal B.B.
        • et al.
        Precuneus shares intrinsic functional architecture in humans and monkeys.
        Proc Natl Acad Sci U S A. 2009; 106: 20069-20074
        • Matsui T.
        • Tamura K.
        • Koyano K.W.
        • Takeuchi D.
        • Adachi Y.
        • Osada T.
        • et al.
        Direct comparison of spontaneous functional connectivity and effective connectivity measured by intracortical microstimulation: an fMRI study in macaque monkeys.
        Cereb Cortex. 2011; 21: 2348-2356
        • Logothetis N.K.
        • Eschenko O.
        • Murayama Y.
        • Augath M.
        • Steudel T.
        • Evrard H.C.
        • et al.
        Hippocampal-cortical interaction during periods of subcortical silence.
        Nature. 2012; 491: 547-553
        • Hutchison R.M.
        • Womelsdorf T.
        • Gati J.S.
        • Everling S.
        • Menon R.S.
        Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques.
        Hum Brain Mapp. 2013; 34: 2154-2177
        • Wang Z.
        • Chen L.M.
        • Negyessy L.
        • Friedman R.M.
        • Mishra A.
        • Gore J.C.
        • et al.
        The relationship of anatomical and functional connectivity to resting-state connectivity in primate somatosensory cortex.
        Neuron. 2013; 78: 1116-1126
        • Mars R.B.
        • Jbabdi S.
        • Sallet J.
        • O׳Reilly J.X.
        • Croxson P.L.
        • Olivier E.
        • et al.
        Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity.
        J Neurosci. 2011; 31: 4087-4100
        • Hutchison R.M.
        • Hutchison M.
        • Manning K.Y.
        • Menon R.S.
        • Everling S.
        Isoflurane induces dose-dependent alterations in the cortical connectivity profiles and dynamic properties of the brain׳s functional architecture.
        Hum Brain Mapp. 2014; 35: 5754-5775
        • Sallet J.
        • Mars R.B.
        • Noonan M.P.
        • Neubert F.X.
        • Jbabdi S.
        • O׳Reilly J.X.
        • et al.
        The organization of dorsal frontal cortex in humans and macaques.
        J Neurosci. 2013; 33: 12255-12274
        • Hutchison R.M.
        • Everling S.
        Monkey in the middle: why non-human primates are needed to bridge the gap in resting-state investigations.
        Front Neuroanat. 2012; 6: 29
        • Groman S.M.
        • Jentsch J.D.
        Identifying the molecular basis of inhibitory control deficits in addictions: neuroimaging in non-human primates.
        Curr Opin Neurobiol. 2013; 23: 625-631
        • Berton O.
        • Hahn C.G.
        • Thase M.E.
        Are we getting closer to valid translational models for major depression?.
        Science. 2012; 338: 75-79
        • Capitanio J.P.
        • Emborg M.E.
        Contributions of non-human primates to neuroscience research.
        Lancet. 2008; 371: 1126-1135
        • Gil-da-Costa R.
        • Stoner G.R.
        • Fung R.
        • Albright T.D.
        Nonhuman primate model of schizophrenia using a noninvasive EEG method.
        Proc Natl Acad Sci U S A. 2013; 110: 15425-15430
        • Driesen N.R.
        • McCarthy G.
        • Bhagwagar Z.
        • Bloch M.H.
        • Calhoun V.D.
        • D׳Souza D.C.
        • et al.
        The impact of NMDA receptor blockade on human working memory-related prefrontal function and connectivity.
        Neuropsychopharmacology. 2013; 38: 2613-2622
        • Scheidegger M.
        • Walter M.
        • Lehmann M.
        • Metzger C.
        • Grimm S.
        • Boeker H.
        • et al.
        Ketamine decreases resting state functional network connectivity in healthy subjects: implications for antidepressant drug action.
        PLoS One. 2012; 7: e44799
        • Gass N.
        • Schwarz A.J.
        • Sartorius A.
        • Schenker E.
        • Risterucci C.
        • Spedding M.
        • et al.
        Sub-anesthetic ketamine modulates intrinsic BOLD connectivity within the hippocampal-prefrontal circuit in the rat.
        Neuropsychopharmacology. 2014; 39: 895-906
        • Bullmore E.
        • Sporns O.
        Complex brain networks: graph theoretical analysis of structural and functional systems.
        Nat Rev Neurosci. 2009; 10: 186-198
        • Zalesky A.
        • Fornito A.
        • Bullmore E.T.
        Network-based statistic: identifying differences in brain networks.
        Neuroimage. 2010; 53: 1197-1207
        • Yamamoto S.
        • Ohba H.
        • Nishiyama S.
        • Harada N.
        • Kakiuchi T.
        • Tsukada H.
        • et al.
        Subanesthetic doses of ketamine transiently decrease serotonin transporter activity: a PET study in conscious monkeys.
        Neuropsychopharmacology. 2013; 38: 2666-2674
        • Van Essen D.C.
        • Drury H.A.
        • Dickson J.
        • Harwell J.
        • Hanlon D.
        • Anderson C.H.
        An integrated software suite for surface-based analyses of cerebral cortex.
        J Am Med Inform Assoc. 2001; 8: 443-459
        • Rohlfing T.
        • Kroenke C.D.
        • Sullivan E.V.
        • Dubach M.F.
        • Bowden D.M.
        • Grant K.A.
        • et al.
        The INIA19 template and NeuroMaps atlas for primate brain image parcellation and spatial normalization.
        Front Neuroinform. 2012; 6: 27
        • Achard S.
        • Bullmore E.
        Efficiency and cost of economical brain functional networks.
        PLoS Comput Biol. 2007; 3: 174-183
        • Bassett D.S.
        • Bullmore E.
        • Verchinski B.A.
        • Mattay V.S.
        • Weinberger D.R.
        • Meyer-Lindenberg A.
        Hierarchical organization of human cortical networks in health and schizophrenia.
        J Neurosci. 2008; 28: 9239-9248
        • Watts D.J.
        • Strogatz S.H.
        Collective dynamics of ׳small-world׳ networks.
        Nature. 1998; 393: 440-442
        • Rubinov M.
        • Sporns O.
        Complex network measures of brain connectivity: uses and interpretations.
        Neuroimage. 2010; 52: 1059-1069
        • Maslov S.
        • Sneppen K.
        Specificity and stability in topology of protein networks.
        Science. 2002; 296: 910-913
        • Zhang J.
        • Wang J.
        • Wu Q.
        • Kuang W.
        • Huang X.
        • He Y.
        • et al.
        Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder.
        Biol Psychiatry. 2011; 70: 334-342
        • Pizzagalli D.A.
        Frontocingulate dysfunction in depression: toward biomarkers of treatment response.
        Neuropsychopharmacology. 2011; 36: 183-206
        • Leistedt S.J.
        • Coumans N.
        • Dumont M.
        • Lanquart J.P.
        • Stam C.J.
        • Linkowski P.
        Altered sleep brain functional connectivity in acutely depressed patients.
        Hum Brain Mapp. 2009; 30: 2207-2219
        • Ma Y.
        Neuropsychological mechanism underlying antidepressant effect: a systematic meta-analysis.
        Mol Psychiatry. 2015; 20: 311-319
        • Greicius M.D.
        • Flores B.H.
        • Menon V.
        • Glover G.H.
        • Solvason H.B.
        • Kenna H.
        • et al.
        Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus.
        Biol Psychiatry. 2007; 62: 429-437
        • Sheline Y.I.
        • Price J.L.
        • Yan Z.
        • Mintun M.A.
        Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus.
        Proc Natl Acad Sci U S A. 2010; 107: 11020-11025
        • Hasler G.
        • Northoff G.
        Discovering imaging endophenotypes for major depression.
        Mol Psychiatry. 2011; 16: 604-619
        • Posner J.
        • Hellerstein D.J.
        • Gat I.
        • Mechling A.
        • Klahr K.
        • Wang Z.
        • et al.
        Antidepressants normalize the default mode network in patients with dysthymia.
        JAMA Psychiatry. 2013; 70: 373-382
        • Frodl T.
        • Bokde A.L.
        • Scheuerecker J.
        • Lisiecka D.
        • Schoepf V.
        • Hampel H.
        • et al.
        Functional connectivity bias of the orbitofrontal cortex in drug-free patients with major depression.
        Biol Psychiatry. 2010; 67: 161-167
        • Hasler G.
        • Drevets W.C.
        • Manji H.K.
        • Charney D.S.
        Discovering endophenotypes for major depression.
        Neuropsychopharmacology. 2004; 29: 1765-1781
        • Meng C.
        • Brandl F.
        • Tahmasian M.
        • Shao J.M.
        • Manoliu A.
        • Scherr M.
        • et al.
        Aberrant topology of striatum׳s connectivity is associated with the number of episodes in depression.
        Brain. 2014; 137: 598-609
        • Li B.
        • Piriz J.
        • Mirrione M.
        • Chung C.
        • Proulx C.D.
        • Schulz D.
        • et al.
        Synaptic potentiation onto habenula neurons in the learned helplessness model of depression.
        Nature. 2011; 470: 535-539
        • Li K.
        • Zhou T.
        • Liao L.
        • Yang Z.
        • Wong C.
        • Henn F.
        • et al.
        betaCaMKII in lateral habenula mediates core symptoms of depression.
        Science. 2013; 341: 1016-1020
        • Hamani C.
        • Mayberg H.
        • Stone S.
        • Laxton A.
        • Haber S.
        • Lozano A.M.
        The subcallosal cingulate gyrus in the context of major depression.
        Biol Psychiatry. 2011; 69: 301-308
        • Mayberg H.S.
        Targeted electrode-based modulation of neural circuits for depression.
        J Clin Invest. 2009; 119: 717-725
        • Mayberg H.S.
        • Lozano A.M.
        • Voon V.
        • McNeely H.E.
        • Seminowicz D.
        • Hamani C.
        • et al.
        Deep brain stimulation for treatment-resistant depression.
        Neuron. 2005; 45: 651-660
        • Bewernick B.H.
        • Hurlemann R.
        • Matusch A.
        • Kayser S.
        • Grubert C.
        • Hadrysiewicz B.
        • et al.
        Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression.
        Biol Psychiatry. 2010; 67: 110-116
        • Koenigs M.
        • Grafman J.
        The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex.
        Behav Brain Res. 2009; 201: 239-243
        • Schaefer A.
        • Burmann I.
        • Regenthal R.
        • Arelin K.
        • Barth C.
        • Pampel A.
        • et al.
        Serotonergic modulation of intrinsic functional connectivity.
        Curr Biol. 2014; 24: 2314-2318
        • McCabe C.
        • Mishor Z.
        • Filippini N.
        • Cowen P.J.
        • Taylor M.J.
        • Harmer C.J.
        SSRI administration reduces resting state functional connectivity in dorso-medial prefrontal cortex.
        Mol Psychiatry. 2011; 16: 592-594
        • McCabe C.
        • Mishor Z.
        Antidepressant medications reduce subcortical-cortical resting-state functional connectivity in healthy volunteers.
        Neuroimage. 2011; 57: 1317-1323
        • Krystal J.H.
        • Karper L.P.
        • Seibyl J.P.
        • Freeman G.K.
        • Delaney R.
        • Bremner J.D.
        • et al.
        Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses.
        Arch Gen Psychiatry. 1994; 51: 199-214