Advertisement

Long Noncoding RNA-Directed Epigenetic Regulation of Gene Expression Is Associated With Anxiety-like Behavior in Mice

Published:February 10, 2015DOI:https://doi.org/10.1016/j.biopsych.2015.02.004

      Abstract

      Background

      RNA-directed regulation of epigenetic processes has recently emerged as an important feature of mammalian differentiation and development. Perturbation of this regulatory system in the brain may contribute to the development of neuropsychiatric disorders.

      Methods

      RNA sequencing was used to identify changes in the experience-dependent expression of long noncoding RNAs (lncRNAs) within the medial prefrontal cortex of adult mice. Transcripts were validated by real-time quantitative polymerase chain reaction and a candidate lncRNA, Gomafu, was selected for further investigation. The functional role of this schizophrenia-related lncRNA was explored in vivo by antisense oligonucleotide-mediated gene knockdown in the medial prefrontal cortex, followed by behavioral training and assessment of fear-related anxiety. Long noncoding RNA-directed epigenetic regulation of gene expression was investigated by chromatin and RNA immunoprecipitation assays.

      Results

      RNA sequencing analysis revealed changes in the expression of a significant number of genes related to neural plasticity and stress, as well as the dynamic regulation of lncRNAs. In particular, we detected a significant downregulation of Gomafu lncRNA. Our results revealed that Gomafu plays a role in mediating anxiety-like behavior and suggest that this may occur through an interaction with a key member of the polycomb repressive complex 1, BMI1, which regulates the expression of the schizophrenia-related gene beta crystallin (Crybb1). We also demonstrated a novel role for Crybb1 in mediating fear-induced anxiety-like behavior.

      Conclusions

      Experience-dependent expression of lncRNAs plays an important role in the epigenetic regulation of adaptive behavior, and the perturbation of Gomafu may be related to anxiety and the development of neuropsychiatric disorders.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Amaral P.P.
        • Dinger M.E.
        • Mercer T.R.
        • Mattick J.S.
        The eukaryotic genome as an RNA machine.
        Science. 2008; 319: 1787-1789
        • Mercer T.R.
        • Dinger M.E.
        • Mattick J.S.
        Long non-coding RNAs: Insights into functions.
        Nat Rev Genet. 10. 2009: 155-159
        • Mattick J.S.
        • Amaral P.P.
        • Dinger M.E.
        • Mercer T.R.
        • Mehler M.F.
        RNA regulation of epigenetic processes.
        Bioessays. 2009; 31: 51-59
        • Koziol M.J.
        • Rinn J.L.
        RNA traffic control of chromatin complexes.
        Curr Opin Genet Dev. 2010; 20: 142-148
        • Mercer T.R.
        • Mattick J.S.
        Structure and function of long noncoding RNAs in epigenetic regulation.
        Nat Struct Mol Biol. 2013; 20: 300-307
        • Cheng J.
        • Kapranov P.
        • Drenkow J.
        • Dike S.
        • Brubaker S.
        • Patel S.
        • et al.
        Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution.
        Science. 2005; 308: 1149-1154
        • Carninci P.
        • Kasukawa T.
        • Katayama S.
        • Gough J.
        • Frith M.C.
        • Maeda N.
        • et al.
        The transcriptional landscape of the mammalian genome.
        Science. 2005; 309: 1559-1563
        • Katayama S.
        • Tomaru Y.
        • Kasukawa T.
        • Waki K.
        • Nakanishi M.
        • Nakamura M.
        • et al.
        Antisense transcription in the mammalian transcriptome.
        Science. 2005; 309: 1564-1566
        • Cabili M.N.
        • Trapnell C.
        • Goff L.
        • Koziol M.
        • Tazon-Vega B.
        • Regev A.
        • Rinn J.L.
        Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses.
        Genes Dev. 2011; 25: 1915-1927
        • Amaral P.P.
        • Clark M.B.
        • Gascoigne D.K.
        • Dinger M.E.
        • Mattick J.S.
        lncRNAdb: A reference database for long noncoding RNAs.
        Nucleic Acids Res. 2011; 39: D146-D151
        • Bu D.
        • Yu K.
        • Sun S.
        • Xie C.
        • Skogerbo G.
        • Miao R.
        • et al.
        NONCODE v3.0: Integrative annotation of long noncoding RNAs.
        Nucleic Acids Res. 2012; 40: D210-D215
        • Mattick J.S.
        RNA regulation: A new genetics?.
        Nat Rev Genet. 2004; 5: 316-323
        • Guttman M.
        • Amit I.
        • Garber M.
        • French C.
        • Lin M.F.
        • Feldser D.
        • et al.
        Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals.
        Nature. 2009; 458: 223-227
        • Mattick J.S.
        The genetic signatures of noncoding RNAs.
        PLoS Genet. 2009; 5: e1000459
        • Mercer T.R.
        • Dinger M.E.
        • Sunkin S.M.
        • Mehler M.F.
        • Mattick J.S.
        Specific expression of long noncoding RNAs in the mouse brain.
        Proc Natl Acad Sci U S A. 2008; 105: 716-721
        • Mercer T.R.
        • Qureshi I.A.
        • Gokhan S.
        • Dinger M.E.
        • Li G.
        • Mattick J.S.
        • Mehler M.F.
        Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation.
        BMC Neurosci. 2010; 11: 14
        • Chodroff R.A.
        • Goodstadt L.
        • Sirey T.M.
        • Oliver P.L.
        • Davies K.E.
        • Green E.D.
        • et al.
        Long noncoding RNA genes: Conservation of sequence and brain expression among diverse amniotes.
        Genome Biol. 2010; 11: R72
        • Lin M.
        • Pedrosa E.
        • Shah A.
        • Hrabovsky A.
        • Maqbool S.
        • Zheng D.
        • Lachman H.M.
        RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders.
        PLoS One. 2011; 6: e23356
        • Lv J.
        • Liu H.
        • Huang Z.
        • Su J.
        • He H.
        • Xiu Y.
        • et al.
        Long non-coding RNA identification over mouse brain development by integrative modeling of chromatin and genomic features.
        Nucleic Acids Res. 2013; 41: 10044-10061
        • Lipovich L.
        • Tarca A.L.
        • Cai J.
        • Jia H.
        • Chugani H.T.
        • Sterner K.N.
        • et al.
        Developmental changes in the transcriptome of human cerebral cortex tissue: Long noncoding RNA transcripts.
        Cereb Cortex. 2014; 24: 1451-1459
        • Ponjavic J.
        • Oliver P.L.
        • Lunter G.
        • Ponting C.P.
        Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain.
        PLoS Genet. 2009; 5: e1000617
        • Ng S.Y.
        • Johnson R.
        • Stanton L.W.
        Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors.
        EMBO J. 2012; 31: 522-533
        • Ng S.Y.
        • Bogu G.K.
        • Soh B.S.
        • Stanton L.W.
        The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis.
        Mol Cell. 2013; 51: 349-359
        • Bernard D.
        • Prasanth K.V.
        • Tripathi V.
        • Colasse S.
        • Nakamura T.
        • Xuan Z.
        • et al.
        A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression.
        EMBO J. 2010; 29: 3082-3093
        • Petazzi P.
        • Sandoval J.
        • Szczesna K.
        • Jorge O.C.
        • Roa L.
        • Sayols S.
        • et al.
        Dysregulation of the long non-coding RNA transcriptome in a Rett syndrome mouse model.
        RNA Biol. 2013; 10: 1197-1203
        • Williams J.M.
        • Beck T.F.
        • Pearson D.M.
        • Proud M.B.
        • Cheung S.W.
        • Scott D.A.
        A 1q42 deletion involving DISC1, DISC2, and TSNAX in an autism spectrum disorder.
        Am J Med Genet A. 2009; 149A: 1758-1762
        • Ziats M.N.
        • Rennert O.M.
        Aberrant expression of long noncoding RNAs in autistic brain.
        J Mol Neurosci. 2013; 49: 589-593
        • Millar J.K.
        • Wilson-Annan J.C.
        • Anderson S.
        • Christie S.
        • Taylor M.S.
        • Semple C.A.
        • et al.
        Disruption of two novel genes by a translocation co-segregating with schizophrenia.
        Hum Mol Genet. 2000; 9: 1415-1423
        • Barry G.
        • Briggs J.A.
        • Vanichkina D.P.
        • Poth E.M.
        • Beveridge N.J.
        • Ratnu V.S.
        • et al.
        The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing.
        Mol Psychiatry. 2014; 19: 486-494
        • Pastori C.
        • Peschansky V.J.
        • Barbouth D.
        • Mehta A.
        • Silva J.P.
        • Wahlestedt C.
        Comprehensive analysis of the transcriptional landscape of the human FMR1 gene reveals two new long noncoding RNAs differentially expressed in Fragile X syndrome and Fragile X-associated tremor/ataxia syndrome.
        Hum Genet. 2014; 133: 59-67
        • Michelhaugh S.K.
        • Lipovich L.
        • Blythe J.
        • Jia H.
        • Kapatos G.
        • Bannon M.J.
        Mining Affymetrix microarray data for long non-coding RNAs: Altered expression in the nucleus accumbens of heroin abusers.
        J Neurochem. 2011; 116: 459-466
        • Bu Q.
        • Hu Z.
        • Chen F.
        • Zhu R.
        • Deng Y.
        • Shao X.
        • et al.
        Transcriptome analysis of long non-coding RNAs of the nucleus accumbens in cocaine-conditioned mice.
        J Neurochem. 2012; 123: 790-799
        • Punzi G.
        • Ursini G.
        • Shin J.H.
        • Kleinman J.E.
        • Hyde T.M.
        • Weinberger D.R.
        Increased expression of MARCKS in post-mortem brain of violent suicide completers is related to transcription of a long, noncoding, antisense RNA.
        Mol Psychiatry. 2014; 19: 1057-1059
        • Lewejohann L.
        • Skryabin B.V.
        • Sachser N.
        • Prehn C.
        • Heiduschka P.
        • Thanos S.
        • et al.
        Role of a neuronal small non-messenger RNA: Behavioural alterations in BC1 RNA-deleted mice.
        Behav Brain Res. 2004; 154: 273-289
        • Centonze D.
        • Rossi S.
        • Napoli I.
        • Mercaldo V.
        • Lacoux C.
        • Ferrari F.
        • et al.
        The brain cytoplasmic RNA BC1 regulates dopamine D2 receptor-mediated transmission in the striatum.
        J Neurosci. 2007; 27: 8885-8892
        • Lipovich L.
        • Dachet F.
        • Cai J.
        • Bagla S.
        • Balan K.
        • Jia H.
        • Loeb J.A.
        Activity-dependent human brain coding/noncoding gene regulatory networks.
        Genetics. 2012; 192: 1133-1148
        • Kim T.K.
        • Hemberg M.
        • Gray J.M.
        • Costa A.M.
        • Bear D.M.
        • Wu J.
        • et al.
        Widespread transcription at neuronal activity-regulated enhancers.
        Nature. 2010; 465: 182-187
        • Ramos A.
        Animal models of anxiety: Do I need multiple tests?.
        Trends Pharmacol Sci. 2008; 29: 493-498
        • Trapnell C.
        • Pachter L.
        • Salzberg S.L.
        TopHat: Discovering splice junctions with RNA-Seq.
        Bioinformatics. 2009; 25: 1105-1111
        • Trapnell C.
        • Roberts A.
        • Goff L.
        • Pertea G.
        • Kim D.
        • Kelley D.R.
        • et al.
        Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks.
        Nat Protoc. 2012; 7: 562-578
        • Trapnell C.
        • Williams B.A.
        • Pertea G.
        • Mortazavi A.
        • Kwan G.
        • van Baren M.J.
        • et al.
        Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation.
        Nat Biotechnol. 2010; 28: 511-515
        • Carey M.F.
        • Peterson C.L.
        • Smale S.T.
        Chromatin immunoprecipitation (ChIP).
        Cold Spring Harb Protoc 2009:pdb prot5279. 2009;
        • Ponting C.P.
        • Oliver P.L.
        • Reik W.
        Evolution and functions of long noncoding RNAs.
        Cell. 2009; 136: 629-641
        • Bekinschtein P.
        • Cammarota M.
        • Medina J.H.
        BDNF and memory processing.
        Neuropharmacology. 2014; 76: 677-683
        • Boulle F.
        • van den Hove D.L.
        • Jakob S.B.
        • Rutten B.P.
        • Hamon M.
        • van Os J.
        • et al.
        Epigenetic regulation of the BDNF gene: Implications for psychiatric disorders.
        Mol Psychiatry. 2012; 17: 584-596
        • Ratnu V.S.
        • Wei W.
        • Bredy T.W.
        Activation-induced cytidine deaminase regulates activity-dependent BDNF expression in post-mitotic cortical neurons.
        Eur J Neurosci. 2014; 40: 3032-3039
        • Bredy T.W.
        • Wu H.
        • Crego C.
        • Zellhoefer J.
        • Sun Y.E.
        • Barad M.
        Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear.
        Learn Mem. 2007; 14: 268-276
        • Furukawa-Hibi Y.
        • Yun J.
        • Nagai T.
        • Yamada K.
        Transcriptional suppression of the neuronal PAS domain 4 (Npas4) gene by stress via the binding of agonist-bound glucocorticoid receptor to its promoter.
        J Neurochem. 2012; 123: 866-875
        • Yun J.
        • Koike H.
        • Ibi D.
        • Toth E.
        • Mizoguchi H.
        • Nitta A.
        • et al.
        Chronic restraint stress impairs neurogenesis and hippocampus-dependent fear memory in mice: Possible involvement of a brain-specific transcription factor Npas4.
        J Neurochem. 2010; 114: 1840-1851
        • Maya-Vetencourt J.F.
        Activity-dependent NPAS4 expression and the regulation of gene programs underlying plasticity in the central nervous system.
        Neural Plast. 2013; 2013: 683909
        • Ploski J.E.
        • Monsey M.S.
        • Nguyen T.
        • DiLeone R.J.
        • Schafe G.E.
        The neuronal PAS domain protein 4 (Npas4) is required for new and reactivated fear memories.
        PloS One. 2011; 6: e23760
        • Schreurs B.G.
        • Smith-Bell C.A.
        • Burhans L.B.
        Incubation of conditioning-specific reflex modification: Implications for post traumatic stress disorder.
        J Psychiatr Res. 2011; 45: 1535-1541
        • Siegmund A.
        • Wotjak C.T.
        A mouse model of posttraumatic stress disorder that distinguishes between conditioned and sensitised fear.
        J Psychiatr Res. 2007; 41: 848-860
        • Kamprath K.
        • Wotjak C.T.
        Nonassociative learning processes determine expression and extinction of conditioned fear in mice.
        Learn Mem. 2004; 11: 770-786
        • Lafaye C.
        • Barbier E.
        • Miscioscia A.
        • Saint-Pierre C.
        • Kraut A.
        • Coute Y.
        • et al.
        DNA binding of the p21 repressor ZBTB2 is inhibited by cytosine hydroxymethylation.
        Biochem Biophys Res Commun. 2014; 446: 341-346
        • Koch S.M.
        • Ullian E.M.
        Neuronal pentraxins mediate silent synapse conversion in the developing visual system.
        J Neurosci. 2010; 30: 5404-5414
        • Mercer T.R.
        • Gerhardt D.J.
        • Dinger M.E.
        • Crawford J.
        • Trapnell C.
        • Jeddeloh J.A.
        • et al.
        Targeted RNA sequencing reveals the deep complexity of the human transcriptome.
        Nat Biotechnol. 2012; 30: 99-104
        • Milad M.R.
        • Pitman R.K.
        • Ellis C.B.
        • Gold A.L.
        • Shin L.M.
        • Lasko N.B.
        • et al.
        Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder.
        Biol Psychiatry. 2009; 66: 1075-1082
        • Cai W.H.
        • Blundell J.
        • Han J.
        • Greene R.W.
        • Powell C.M.
        Postreactivation glucocorticoids impair recall of established fear memory.
        J Neurosci. 2006; 26: 9560-9566
        • Miracle A.D.
        • Brace M.F.
        • Huyck K.D.
        • Singler S.A.
        • Wellman C.L.
        Chronic stress impairs recall of extinction of conditioned fear.
        Neurobiol Learn Mem. 2006; 85: 213-218
        • Wilber A.A.
        • Walker A.G.
        • Southwood C.J.
        • Farrell M.R.
        • Lin G.L.
        • Rebec G.V.
        • Wellman C.L.
        Chronic stress alters neural activity in medial prefrontal cortex during retrieval of extinction.
        Neuroscience. 2011; 174: 115-131
        • Bailey K.R.
        • Crawley J.N.
        Anxiety-related behaviors in mice.
        in: Buccafusco J.J. Methods of Behavior Analysis in Neuroscience. 2nd ed. CRC Press, Boca Raton, FL2009
        • Tripathi V.
        • Ellis J.D.
        • Shen Z.
        • Song D.Y.
        • Pan Q.
        • Watt A.T.
        • et al.
        The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation.
        Mol Cell. 2010; 39: 925-938
        • Tripathi V.
        • Shen Z.
        • Chakraborty A.
        • Giri S.
        • Freier S.M.
        • Wu X.
        • et al.
        Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB.
        PLoS Genet. 2013; 9: e1003368
        • Zhang B.
        • Arun G.
        • Mao Y.S.
        • Lazar Z.
        • Hung G.
        • Bhattacharjee G.
        • et al.
        The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult.
        Cell Rep. 2012; 2: 111-123
        • Stetler R.A.
        • Gan Y.
        • Zhang W.
        • Liou A.K.
        • Gao Y.
        • Cao G.
        • Chen J.
        Heat shock proteins: Cellular and molecular mechanisms in the central nervous system.
        Prog Neurobiol. 2010; 92: 184-211
        • Kalmar B.
        • Greensmith L.
        Induction of heat shock proteins for protection against oxidative stress.
        Adv Drug Deliv Rev. 2009; 61: 310-318
        • Wistow G.
        The human crystallin gene families.
        Human Genomics. 2012; 6: 26
        • Lopez-Gonzalez I.
        • Carmona M.
        • Arregui L.
        • Kovacs G.G.
        • Ferrer I.
        alphaB-crystallin and HSP27 in glial cells in tauopathies.
        Neuropathology. 2014; 34: 517-526
        • Chang L.Y.
        • Lowe J.
        • Ardiles A.
        • Lim J.
        • Grey A.C.
        • Robertson K.
        • et al.
        Alzheimer’s disease in the human eye. Clinical tests that identify ocular and visual information processing deficit as biomarkers.
        Alzheimers Dement. 2014; 10: 251-261
        • Leng X.Y.
        • Wang S.
        • Cao N.Q.
        • Qi L.B.
        • Yan Y.B.
        The N-terminal extension of betaB1-crystallin chaperones beta-crystallin folding and cooperates with alphaA-crystallin.
        Biochemistry. 2014; 53: 2464-2473
        • Garbett K.A.
        • Hsiao E.Y.
        • Kalman S.
        • Patterson P.H.
        • Mirnics K.
        Effects of maternal immune activation on gene expression patterns in the fetal brain.
        Transl Psychiatry. 2012; 2: e98
        • Gill M.
        • Vallada H.
        • Collier D.
        • Sham P.
        • Holmans P.
        • Murray R.
        • et al.
        A combined analysis of D22S278 marker alleles in affected sib-pairs: Support for a susceptibility locus for schizophrenia at chromosome 22q12. Schizophrenia Collaborative Linkage Group (Chromosome 22).
        Am J Med Genet. 1996; 67: 40-45
        • Takahashi S.
        • Ohtsuki T.
        • Yu S.Y.
        • Tanabe E.
        • Yara K.
        • Kamioka M.
        • et al.
        Significant linkage to chromosome 22q for exploratory eye movement dysfunction in schizophrenia.
        Am J Med Genet B Neuropsychiatr Genet. 2003; 123B: 27-32
        • Pulver A.E.
        • Karayiorgou M.
        • Wolyniec P.S.
        • Lasseter V.K.
        • Kasch L.
        • Nestadt G.
        • et al.
        Sequential strategy to identify a susceptibility gene for schizophrenia: Report of potential linkage on chromosome 22q12-q13.1.
        Am J Med Genet. 1994; 54: 36-43
        • Khalil A.M.
        • Guttman M.
        • Huarte M.
        • Garber M.
        • Raj A.
        • Rivea Morales D.
        • et al.
        Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression.
        Proc Natl Acad Sci U S A. 2009; 106: 11667-11672
        • Marin-Bejar O.
        • Marchese F.P.
        • Athie A.
        • Sanchez Y.
        • Gonzalez J.
        • Segura V.
        • et al.
        Pint lincRNA connects the p53 pathway with epigenetic silencing by the Polycomb repressive complex 2.
        Genome Biol. 2013; 14: R104
        • Rinn J.L.
        • Kertesz M.
        • Wang J.K.
        • Squazzo S.L.
        • Xu X.
        • Brugmann S.A.
        • et al.
        Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs.
        Cell. 2007; 129: 1311-1323
        • Kotake Y.
        • Nakagawa T.
        • Kitagawa K.
        • Suzuki S.
        • Liu N.
        • Kitagawa M.
        • et al.
        Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene.
        Oncogene. 2011; 30: 1956-1962
        • Yap K.L.
        • Li S.
        • Munoz-Cabello A.M.
        • Raguz S.
        • Zeng L.
        • Mujtaba S.
        • et al.
        Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a.
        Mol Cell. 2010; 38: 662-674
        • Tsai M.C.
        • Manor O.
        • Wan Y.
        • Mosammaparast N.
        • Wang J.K.
        • Lan F.
        • et al.
        Long noncoding RNA as modular scaffold of histone modification complexes.
        Science. 2010; 329: 689-693
        • Meng S.
        • Luo M.
        • Sun H.
        • Yu X.
        • Shen M.
        • Zhang Q.
        • et al.
        Identification and characterization of Bmi-1-responding element within the human p16 promoter.
        J Biol Chem. 2010; 285: 33219-33229
        • Orsini C.A.
        • Maren S.
        Neural and cellular mechanisms of fear and extinction memory formation.
        Neurosci Biobehav Rev. 2012; 36: 1773-1802
        • Berkowitz R.L.
        • Coplan J.D.
        • Reddy D.P.
        • Gorman J.M.
        The human dimension: How the prefrontal cortex modulates the subcortical fear response.
        Rev Neurosci. 2007; 18: 191-207
        • Indovina I.
        • Robbins T.W.
        • Nunez-Elizalde A.O.
        • Dunn B.D.
        • Bishop S.J.
        Fear-conditioning mechanisms associated with trait vulnerability to anxiety in humans.
        Neuron. 2011; 69: 563-571
        • Yuen E.Y.
        • Wei J.
        • Liu W.
        • Zhong P.
        • Li X.
        • Yan Z.
        Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex.
        Neuron. 2012; 73: 962-977
        • Ponder C.A.
        • Kliethermes C.L.
        • Drew M.R.
        • Muller J.
        • Das K.
        • Risbrough V.B.
        • et al.
        Selection for contextual fear conditioning affects anxiety-like behaviors and gene expression.
        Genes Brain Behav. 2007; 6: 736-749
        • Arnsten A.F.
        Prefrontal cortical network connections: Key site of vulnerability in stress and schizophrenia.
        Int J Dev Neurosci. 2011; 29: 215-223
        • Hains A.B.
        • Arnsten A.F.
        Molecular mechanisms of stress-induced prefrontal cortical impairment: Implications for mental illness.
        Learn Mem. 2008; 15: 551-564
        • Muller J.E.
        • Koen L.
        • Soraya S.
        • Emsley R.A.
        • Stein D.J.
        Anxiety disorders and schizophrenia.
        Curr Psychiatry Rep. 2004; 6: 255-261
        • Nebioglu M.
        • Altindag A.
        The prevalence of comorbid anxiety disorders in outpatients with schizophrenia.
        Int J Psychiatry Clin Pract. 2009; 13: 312-317
        • Lysaker P.H.
        • Salyers M.P.
        Anxiety symptoms in schizophrenia spectrum disorders: Associations with social function, positive and negative symptoms, hope and trauma history.
        Acta Psychiatr Scand. 2007; 116: 290-298
        • Achim A.M.
        • Maziade M.
        • Raymond E.
        • Olivier D.
        • Merette C.
        • Roy M.A.
        How prevalent are anxiety disorders in schizophrenia? A meta-analysis and critical review on a significant association.
        Schizophr Bull. 2011; 37: 811-821
        • Young S.
        • Pfaff D.
        • Lewandowski K.E.
        • Ravichandran C.
        • Cohen B.M.
        • Ongur D.
        Anxiety disorder comorbidity in bipolar disorder, schizophrenia and schizoaffective disorder.
        Psychopathology. 2013; 46: 176-185
        • Pallanti S.
        • Cantisani A.
        • Grassi G.
        Anxiety as a core aspect of schizophrenia.
        Curr Psychiatry Rep. 2013; 15: 354
        • Braga R.J.
        • Reynolds G.P.
        • Siris S.G.
        Anxiety comorbidity in schizophrenia.
        Psychiatry Res. 2013; 210: 1-7
        • Sone M.
        • Hayashi T.
        • Tarui H.
        • Agata K.
        • Takeichi M.
        • Nakagawa S.
        The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons.
        J Cell Sci. 2007; 120: 2498-2506
        • Aberg K.
        • Saetre P.
        • Jareborg N.
        • Jazin E.
        Human QKI, a potential regulator of mRNA expression of human oligodendrocyte-related genes involved in schizophrenia.
        Proc Natl Acad Sci U S A. 2006; 103: 7482-7487
        • Aberg K.
        • Saetre P.
        • Lindholm E.
        • Ekholm B.
        • Pettersson U.
        • Adolfsson R.
        • Jazin E.
        Human QKI, a new candidate gene for schizophrenia involved in myelination.
        Am J Med Genet B Neuropsychiatr Genet. 2006; 141B: 84-90
        • Haroutunian V.
        • Katsel P.
        • Dracheva S.
        • Davis K.L.
        The human homolog of the QKI gene affected in the severe dysmyelination "quaking" mouse phenotype: Downregulated in multiple brain regions in schizophrenia.
        Am J Psychiatry. 2006; 163: 1834-1837
        • Luco R.F.
        • Allo M.
        • Schor I.E.
        • Kornblihtt A.R.
        • Misteli T.
        Epigenetics in alternative pre-mRNA splicing.
        Cell. 2011; 144: 16-26
        • Zhou Y.P.
        • Lu Y.L.
        • Tian W.D.
        Epigenetic features are significantly associated with alternative splicing.
        BMC Genomics. 2012; 13: 123
        • Mercer T.R.
        • Edwards S.L.
        • Clark M.B.
        • Neph S.J.
        • Wang H.
        • Stergachis A.B.
        • et al.
        DNase I-hypersensitive exons colocalize with promoters and distal regulatory elements.
        Nat Genet. 2013; 45: 852-859
        • Mercer T.R.
        • Mattick J.S.
        Understanding the regulatory and transcriptional complexity of the genome through structure.
        Genome Res. 2013; 23: 1081-1088
        • Khan D.H.
        • Jahan S.
        • Davie J.R.
        Pre-mRNA splicing: Role of epigenetics and implications in disease.
        Adv Biol Regul. 2012; 52: 377-388
        • Mehler M.F.
        • Mattick J.S.
        Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease.
        Physiol Rev. 2007; 87: 799-823
        • DeLisi L.E.
        • Shaw S.H.
        • Crow T.J.
        • Shields G.
        • Smith A.B.
        • Larach V.W.
        • et al.
        A genome-wide scan for linkage to chromosomal regions in 382 sibling pairs with schizophrenia or schizoaffective disorder.
        Am J Psychiatry. 2002; 159: 803-812
        • Meyer E.
        • Rahman F.
        • Owens J.
        • Pasha S.
        • Morgan N.V.
        • Trembath R.C.
        • et al.
        Initiation codon mutation in betaB1-crystallin (CRYBB1) associated with autosomal recessive nuclear pulverulent cataract.
        Mol Vis. 2009; 15: 1014-1019
        • Deng H.
        • Yuan L.
        Molecular genetics of congenital nuclear cataract.
        Eur J Med Genet. 2014; 57: 113-122
        • Bracken A.P.
        • Kleine-Kohlbrecher D.
        • Dietrich N.
        • Pasini D.
        • Gargiulo G.
        • Beekman C.
        • et al.
        The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells.
        Genes Dev. 2007; 21: 525-530
        • Gargiulo G.
        • Cesaroni M.
        • Serresi M.
        • de Vries N.
        • Hulsman D.
        • Bruggeman S.W.
        • et al.
        In vivo RNAi screen for BMI1 targets identifies TGF-beta/BMP-ER stress pathways as key regulators of neural- and malignant glioma-stem cell homeostasis.
        Cancer Cell. 2013; 23: 660-676
        • Nakamura S.
        • Oshima M.
        • Yuan J.
        • Saraya A.
        • Miyagi S.
        • Konuma T.
        • et al.
        Bmi1 confers resistance to oxidative stress on hematopoietic stem cells.
        PloS One. 2012; 7: e36209
        • Calao M.
        • Sekyere E.O.
        • Cui H.J.
        • Cheung B.B.
        • Thomas W.D.
        • Keating J.
        • et al.
        Direct effects of Bmi1 on p53 protein stability inactivates oncoprotein stress responses in embryonal cancer precursor cells at tumor initiation.
        Oncogene. 2013; 32: 3616-3626
        • Molofsky A.V.
        • Pardal R.
        • Iwashita T.
        • Park I.K.
        • Clarke M.F.
        • Morrison S.J.
        Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation.
        Nature. 2003; 425: 962-967
        • Molofsky A.V.
        • He S.
        • Bydon M.
        • Morrison S.J.
        • Pardal R.
        Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways.
        Genes Dev. 2005; 19: 1432-1437
        • Fasano C.A.
        • Dimos J.T.
        • Ivanova N.B.
        • Lowry N.
        • Lemischka I.R.
        • Temple S.
        shRNA knockdown of Bmi-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development.
        Cell Stem Cell. 2007; 1: 87-99
        • Fasano C.A.
        • Phoenix T.N.
        • Kokovay E.
        • Lowry N.
        • Elkabetz Y.
        • Dimos J.T.
        • et al.
        Bmi-1 cooperates with Foxg1 to maintain neural stem cell self-renewal in the forebrain.
        Genes Dev. 2009; 23: 561-574
        • He S.
        • Iwashita T.
        • Buchstaller J.
        • Molofsky A.V.
        • Thomas D.
        • Morrison S.J.
        Bmi-1 over-expression in neural stem/progenitor cells increases proliferation and neurogenesis in culture but has little effect on these functions in vivo.
        Dev Biol. 2009; 328: 257-272
        • Chatoo W.
        • Abdouh M.
        • David J.
        • Champagne M.P.
        • Ferreira J.
        • Rodier F.
        • Bernier G.
        The polycomb group gene Bmi1 regulates antioxidant defenses in neurons by repressing p53 pro-oxidant activity.
        J Neurosci. 2009; 29: 529-542
        • Abdouh M.
        • Chatoo W.
        • El Hajjar J.
        • David J.
        • Ferreira J.
        • Bernier G.
        Bmi1 is down-regulated in the aging brain and displays antioxidant and protective activities in neurons.
        PloS One. 2012; 7: e31870
        • Li L.
        • Feng T.
        • Lian Y.
        • Zhang G.
        • Garen A.
        • Song X.
        Role of human noncoding RNAs in the control of tumorigenesis.
        Proc Natl Acad Sci U S A. 2009; 106: 12956-12961