Advertisement

Genetic Mapping in Mice Reveals the Involvement of Pcdh9 in Long-Term Social and Object Recognition and Sensorimotor Development

Published:February 06, 2015DOI:https://doi.org/10.1016/j.biopsych.2015.01.017

      Abstract

      Background

      Quantitative genetic analysis of basic mouse behaviors is a powerful tool to identify novel genetic phenotypes contributing to neurobehavioral disorders. Here, we analyzed genetic contributions to single-trial, long-term social and nonsocial recognition and subsequently studied the functional impact of an identified candidate gene on behavioral development.

      Methods

      Genetic mapping of single-trial social recognition was performed in chromosome substitution strains, a sophisticated tool for detecting quantitative trait loci (QTL) of complex traits. Follow-up occurred by generating and testing knockout (KO) mice of a selected QTL candidate gene. Functional characterization of these mice was performed through behavioral and neurological assessments across developmental stages and analyses of gene expression and brain morphology.

      Results

      Chromosome substitution strain 14 mapping studies revealed an overlapping QTL related to long-term social and object recognition harboring Pcdh9, a cell-adhesion gene previously associated with autism spectrum disorder. Specific long-term social and object recognition deficits were confirmed in homozygous (KO) Pcdh9-deficient mice, while heterozygous mice only showed long-term social recognition impairment. The recognition deficits in KO mice were not associated with alterations in perception, multi-trial discrimination learning, sociability, behavioral flexibility, or fear memory. Rather, KO mice showed additional impairments in sensorimotor development reflected by early touch-evoked biting, rotarod performance, and sensory gating deficits. This profile emerged with structural changes in deep layers of sensory cortices, where Pcdh9 is selectively expressed.

      Conclusions

      This behavior-to-gene study implicates Pcdh9 in cognitive functions required for long-term social and nonsocial recognition. This role is supported by the involvement of Pcdh9 in sensory cortex development and sensorimotor phenotypes.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abrahams B.S.
        • Geschwind D.H.
        Connecting genes to brain in the autism spectrum disorders.
        Arch Neurol. 2010; 67: 395-399
        • Insel T.R.
        Rethinking schizophrenia.
        Nature. 2010; 468: 187-193
        • Meyer-Lindenberg A.
        • Weinberger D.R.
        Intermediate phenotypes and genetic mechanisms of psychiatric disorders.
        Nat Rev Neurosci. 2006; 7: 818-827
        • Flint J.
        • Timpson N.
        • Munafo M.
        Assessing the utility of intermediate phenotypes for genetic mapping of psychiatric disease.
        Trends Neurosci. 2014; 37: 733-741
        • Donaldson Z.R.
        • Hen R.
        From psychiatric disorders to animal models: A bidirectional and dimensional approach.
        Biol Psychiatry. 2015; 77: 15-21
        • Kas M.J.
        • Fernandes C.
        • Schalkwyk L.C.
        • Collier D.A.
        Genetics of behavioural domains across the neuropsychiatric spectrum; of mice and men.
        Mol Psychiatry. 2007; 12: 324-330
        • Berry R.J.
        • Bronson F.H.
        Life history and bioeconomy of the house mouse.
        Biol Rev Camb Philos Soc. 1992; 67: 519-550
        • Young L.J.
        The neurobiology of social recognition, approach, and avoidance.
        Biol Psychiatry. 2002; 51: 18-26
        • Engelmann M.
        • Hadicke J.
        • Noack J.
        Testing declarative memory in laboratory rats and mice using the nonconditioned social discrimination procedure.
        Nat Protoc. 2011; 6: 1152-1162
        • Engelmann M.
        • Wotjak C.T.
        • Landgraf R.
        Social discrimination procedure: An alternative method to investigate juvenile recognition abilities in rats.
        Physiol Behav. 1995; 58: 315-321
        • Engelmann M.
        Competition between two memory traces for long-term recognition memory.
        Neurobiol Learn Mem. 2009; 91: 58-65
        • Molenhuis R.T.
        • de Visser L.
        • Bruining H.
        • Kas M.J.
        Enhancing the value of psychiatric mouse models; differential expression of developmental behavioral and cognitive profiles in four inbred strains of mice.
        Eur Neuropsychopharmacol. 2014; 24: 945-954
        • Kas M.J.
        • de Mooij-van Malsen J.G.
        • de Krom M.
        • van Gassen K.L.
        • van Lith H.A.
        • Olivier B.
        • et al.
        High-resolution genetic mapping of mammalian motor activity levels in mice.
        Genes Brain Behav. 2009; 8: 13-22
        • Cox A.
        • Ackert-Bicknell C.L.
        • Dumont B.L.
        • Ding Y.
        • Bell J.T.
        • Brockmann G.A.
        • et al.
        A new standard genetic map for the laboratory mouse.
        Genetics. 2009; 182: 1335-1344
        • Broman K.W.
        • Wu H.
        • Sen S.
        • Churchill G.A.
        R/qtl: QTL mapping in experimental crosses.
        Bioinformatics. 2003; 19: 889-890
        • Losh M.
        • Adolphs R.
        • Poe M.D.
        • Couture S.
        • Penn D.
        • Baranek G.T.
        • Piven J.
        Neuropsychological profile of autism and the broad autism phenotype.
        Arch Gen Psychiatry. 2009; 66: 518-526
        • Yagi T.
        • Tokunaga T.
        • Furuta Y.
        • Nada S.
        • Yoshida M.
        • Tsukada T.
        • et al.
        A novel ES cell line, TT2, with high germline-differentiating potency.
        Anal Biochem. 1993; 214: 70-76
        • Rogers D.C.
        • Jones D.N.
        • Nelson P.R.
        • Jones C.M.
        • Quilter C.A.
        • Robinson T.L.
        • Hagan J.J.
        Use of SHIRPA and discriminant analysis to characterise marked differences in the behavioural phenotype of six inbred mouse strains.
        Behav Brain Res. 1999; 105: 207-217
        • Lalonde R.
        • Dumont M.
        • Staufenbiel M.
        • Strazielle C.
        Neurobehavioral characterization of APP23 transgenic mice with the SHIRPA primary screen.
        Behav Brain Res. 2005; 157: 91-98
        • Nadler J.J.
        • Moy S.S.
        • Dold G.
        • Trang D.
        • Simmons N.
        • Perez A.
        • et al.
        Automated apparatus for quantitation of social approach behaviors in mice.
        Genes Brain Behav. 2004; 3: 303-314
        • Misane I.
        • Kruis A.
        • Pieneman A.W.
        • Ogren S.O.
        • Stiedl O.
        GABA(A) receptor activation in the CA1 area of the dorsal hippocampus impairs consolidation of conditioned contextual fear in C57BL/6J mice.
        Behav Brain Res. 2013; 238: 160-169
        • Nadeau J.H.
        • Singer J.B.
        • Matin A.
        • Lander E.S.
        Analysing complex genetic traits with chromosome substitution strains.
        Nat Genet. 2000; 24: 221-225
        • de Mooij-van Malsen A.J.
        • van Lith H.A.
        • Oppelaar H.
        • Hendriks J.
        • de Wit M.
        • Kostrzewa E.
        • et al.
        Interspecies trait genetics reveals association of Adcy8 with mouse avoidance behavior and a human mood disorder.
        Biol Psychiatry. 2009; 66: 1123-1130
        • Krewson T.D.
        • Supelak P.J.
        • Hill A.E.
        • Singer J.B.
        • Lander E.S.
        • Nadeau J.H.
        • Palmert M.R.
        Chromosomes 6 and 13 harbor genes that regulate pubertal timing in mouse chromosome substitution strains.
        Endocrinology. 2004; 145: 4447-4451
        • Singer J.B.
        • Hill A.E.
        • Burrage L.C.
        • Olszens K.R.
        • Song J.
        • Justice M.
        • et al.
        Genetic dissection of complex traits with chromosome substitution strains of mice.
        Science. 2004; 304: 445-448
        • Winawer M.R.
        • Gildersleeve S.S.
        • Phillips A.G.
        • Rabinowitz D.
        • Palmer A.A.
        Mapping a mouse limbic seizure susceptibility locus on chromosome 10.
        Epilepsia. 2011; 52: 2076-2083
        • Redies C.
        Cadherins in the central nervous system.
        Prog Neurobiol. 2000; 61: 611-648
        • Takeichi M.
        The cadherin superfamily in neuronal connections and interactions.
        Nat Rev Neurosci. 2007; 8: 11-20
        • Kahr I.
        • Vandepoele K.
        • van Roy F.
        Delta-protocadherins in health and disease.
        Prog Mol Biol Transl Sci. 2013; 116: 169-192
        • Redies C.
        • Vanhalst K.
        • Roy F.
        delta-Protocadherins: Unique structures and functions.
        Cell Mol Life Sci. 2005; 62: 2840-2852
        • Vanhalst K.
        • Kools P.
        • Staes K.
        • van Roy F.
        • Redies C.
        delta-Protocadherins: A gene family expressed differentially in the mouse brain.
        Cell Mol Life Sci. 2005; 62: 1247-1259
        • Kim S.Y.
        • Yasuda S.
        • Tanaka H.
        • Yamagata K.
        • Kim H.
        Non-clustered protocadherin.
        Cell Adh Migr. 2011; 5: 97-105
        • Redies C.
        • Hertel N.
        • Hubner C.A.
        Cadherins and neuropsychiatric disorders.
        Brain Res. 2012; 1470: 130-144
        • Bucan M.
        • Abrahams B.S.
        • Wang K.
        • Glessner J.T.
        • Herman E.I.
        • Sonnenblick L.I.
        • et al.
        Genome-wide analyses of exonic copy number variants in a family-based study point to novel autism susceptibility genes.
        PLoS Genet. 2009; 5: e1000536
        • Girirajan S.
        • Dennis M.Y.
        • Baker C.
        • Malig M.
        • Coe B.P.
        • Campbell C.D.
        • et al.
        Refinement and discovery of new hotspots of copy-number variation associated with autism spectrum disorder.
        Am J Hum Genet. 2013; 92: 221-237
        • Leblond C.S.
        • Heinrich J.
        • Delorme R.
        • Proepper C.
        • Betancur C.
        • Huguet G.
        • et al.
        Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders.
        PLoS Genet. 2012; 8: e1002521
        • Luo R.
        • Sanders S.J.
        • Tian Y.
        • Voineagu I.
        • Huang N.
        • Chu S.H.
        • et al.
        Genome-wide transcriptome profiling reveals the functional impact of rare de novo and recurrent CNVs in autism spectrum disorders.
        Am J Hum Genet. 2012; 91: 38-55
        • Marshall C.R.
        • Noor A.
        • Vincent J.B.
        • Lionel A.C.
        • Feuk L.
        • Skaug J.
        • et al.
        Structural variation of chromosomes in autism spectrum disorder.
        Am J Hum Genet. 2008; 82: 477-488
        • Chase K.
        • Jones P.
        • Martin A.
        • Ostrander E.A.
        • Lark K.G.
        Genetic mapping of fixed phenotypes: Disease frequency as a breed characteristic.
        J Hered. 2009; 100: S37-S41
        • Starling M.J.
        • Branson N.
        • Thomson P.C.
        • McGreevy P.D.
        Age, sex and reproductive status affect boldness in dogs.
        Vet J. 2013; 197: 868-872
        • Blevins C.J.
        • Emond M.R.
        • Biswas S.
        • Jontes J.D.
        Differential expression, alternative splicing, and adhesive properties of the zebrafish delta1-protocadherins.
        Neuroscience. 2011; 199: 523-534
        • Kim S.Y.
        • Chung H.S.
        • Sun W.
        • Kim H.
        Spatiotemporal expression pattern of non-clustered protocadherin family members in the developing rat brain.
        Neuroscience. 2007; 147: 996-1021
        • Kim S.Y.
        • Mo J.W.
        • Han S.
        • Choi S.Y.
        • Han S.B.
        • Moon B.H.
        • et al.
        The expression of non-clustered protocadherins in adult rat hippocampal formation and the connecting brain regions.
        Neuroscience. 2010; 170: 189-199
        • Krishna K.
        • Nuernberger M.
        • Weth F.
        • Redies C.
        Layer-specific expression of multiple cadherins in the developing visual cortex (V1) of the ferret.
        Cereb Cortex. 2009; 19: 388-401
        • Lin J.
        • Wang C.
        • Redies C.
        Expression of multiple delta-protocadherins during feather bud formation.
        Gene Expr Patterns. 2013; 13: 57-65
        • Liu Q.
        • Chen Y.
        • Pan J.J.
        • Murakami T.
        Expression of protocadherin-9 and protocadherin-17 in the nervous system of the embryonic zebrafish.
        Gene Expr Patterns. 2009; 9: 490-496
        • Redies C.
        • Neudert F.
        • Lin J.
        Cadherins in cerebellar development: Translation of embryonic patterning into mature functional compartmentalization.
        Cerebellum. 2011; 10: 393-408
        • Molyneaux B.J.
        • Arlotta P.
        • Menezes J.R.
        • Macklis J.D.
        Neuronal subtype specification in the cerebral cortex.
        Nat Rev Neurosci. 2007; 8: 427-437
        • Bissonette G.B.
        • Martins G.J.
        • Franz T.M.
        • Harper E.S.
        • Schoenbaum G.
        • Powell E.M.
        Double dissociation of the effects of medial and orbital prefrontal cortical lesions on attentional and affective shifts in mice.
        J Neurosci. 2008; 28: 11124-11130
        • Stiedl O.
        • Birkenfeld K.
        • Palve M.
        • Spiess J.
        Impairment of conditioned contextual fear of C57BL/6J mice by intracerebral injections of the NMDA receptor antagonist APV.
        Behav Brain Res. 2000; 116: 157-168
        • Krishna K.K.
        • Hertel N.
        • Redies C.
        Cadherin expression in the somatosensory cortex: Evidence for a combinatorial molecular code at the single-cell level.
        Neuroscience. 2011; 175: 37-48
        • Rakic P.
        • Caviness Jr, V.S.
        Cortical development: View from neurological mutants two decades later.
        Neuron. 1995; 14: 1101-1104
        • Gao F.B.
        • Kohwi M.
        • Brenman J.E.
        • Jan L.Y.
        • Jan Y.N.
        Control of dendritic field formation in Drosophila: The roles of flamingo and competition between homologous neurons.
        Neuron. 2000; 28: 91-101
        • Lefebvre J.L.
        • Kostadinov D.
        • Chen W.V.
        • Maniatis T.
        • Sanes J.R.
        Protocadherins mediate dendritic self-avoidance in the mammalian nervous system.
        Nature. 2012; 488: 517-521
        • Piper M.
        • Dwivedy A.
        • Leung L.
        • Bradley R.S.
        • Holt C.E.
        NF-protocadherin and TAF1 regulate retinal axon initiation and elongation in vivo.
        J Neurosci. 2008; 28: 100-105
        • Shima Y.
        • Kengaku M.
        • Hirano T.
        • Takeichi M.
        • Uemura T.
        Regulation of dendritic maintenance and growth by a mammalian 7-pass transmembrane cadherin.
        Dev Cell. 2004; 7: 205-216
        • Yasuda S.
        • Tanaka H.
        • Sugiura H.
        • Okamura K.
        • Sakaguchi T.
        • Tran U.
        • et al.
        Activity-induced protocadherin arcadlin regulates dendritic spine number by triggering N-cadherin endocytosis via TAO2beta and p38 MAP kinases.
        Neuron. 2007; 56: 456-471
        • Weinberger N.M.
        Specific long-term memory traces in primary auditory cortex.
        Nat Rev Neurosci. 2004; 5: 279-290
        • Headley D.B.
        • Weinberger N.M.
        Relational associative learning induces cross-modal plasticity in early visual cortex [published online ahead of print November 24].
        Cereb Cortex. 2013;
        • Ben-Sasson A.
        • Hen L.
        • Fluss R.
        • Cermak S.A.
        • Engel-Yeger B.
        • Gal E.
        A meta-analysis of sensory modulation symptoms in individuals with autism spectrum disorders.
        J Autism Dev Disord. 2009; 39: 1-11
        • Brown C.
        • Cromwell R.L.
        • Filion D.
        • Dunn W.
        • Tollefson N.
        Sensory processing in schizophrenia: Missing and avoiding information.
        Schizophr Res. 2002; 55: 187-195
        • Miller L.J.
        • Nielsen D.M.
        • Schoen S.A.
        • Brett-Green B.A.
        Perspectives on sensory processing disorder: A call for translational research.
        Front Integr Neurosci. 2009; 3: 22
        • Swerdlow N.R.
        • Braff D.L.
        • Geyer M.A.
        Animal models of deficient sensorimotor gating: What we know, what we think we know, and what we hope to know soon.
        Behav Pharmacol. 2000; 11: 185-204
        • Braff D.L.
        • Grillon C.
        • Geyer M.A.
        Gating and habituation of the startle reflex in schizophrenic patients.
        Arch Gen Psychiatry. 1992; 49: 206-215
        • Aldinger K.A.
        • Plummer J.T.
        • Qiu S.
        • Levitt P.
        SnapShot: Genetics of autism.
        Neuron. 2011; 72 (418–8.e1)
        • Bacon C.
        • Schneider M.
        • Le Magueresse C.
        • Froehlich H.
        • Sticht C.
        • Gluch C.
        • et al.
        Brain-specific Foxp1 deletion impairs neuronal development and causes autistic-like behaviour [published online ahead of print September 30].
        Mol Psychiatry. 2014;
        • Brown T.
        • Leo M.
        • Austin D.W.
        Discriminant validity of the Sensory Profile in Australian children with autism spectrum disorder.
        Phys Occup Ther Pediatr. 2008; 28: 253-266
        • Rogers S.J.
        • Ozonoff S.
        Annotation: What do we know about sensory dysfunction in autism? A critical review of the empirical evidence.
        J Child Psychol Psychiatry. 2005; 46: 1255-1268
        • Mandy W.P.
        • Charman T.
        • Skuse D.H.
        Testing the construct validity of proposed criteria for DSM-5 autism spectrum disorder.
        J Am Acad Child Adolesc Psychiatry. 2012; 51: 41-50