Advertisement

Neurobiological Impact of Nicotinic Acetylcholine Receptor Agonists: An Activation Likelihood Estimation Meta-Analysis of Pharmacologic Neuroimaging Studies

      Abstract

      Background

      Nicotinic acetylcholine receptor (nAChR) agonists augment cognition among cigarette smokers and nonsmokers, yet the systems-level neurobiological mechanisms underlying such improvements are not fully understood. Aggregating neuroimaging results regarding nAChR agonists provides a means to identify common functional brain changes that may be related to procognitive drug effects.

      Methods

      We conducted a meta-analysis of pharmacologic neuroimaging studies within the activation likelihood estimation framework. We identified published studies contrasting a nAChR drug condition versus a baseline and coded each contrast by activity change direction (decrease or increase), participant characteristics (smokers or nonsmokers), and drug manipulation employed (pharmacologic administration or cigarette smoking).

      Results

      When considering all studies, nAChR agonist administration was associated with activity decreases in multiple regions, including the ventromedial prefrontal cortex (vmPFC), posterior cingulate cortex (PCC), parahippocampus, insula, and the parietal and precentral cortices. Conversely, activity increases were observed in lateral frontoparietal cortices, the anterior cingulate cortex, thalamus, and cuneus. Exploratory analyses indicated that both smokers and nonsmokers showed activity decreases in the vmPFC and PCC, and increases in lateral frontoparietal regions. Among smokers, both pharmacologic administration and cigarette smoking were associated with activity decreases in the vmPFC, PCC, and insula and increases in the lateral PFC, dorsal anterior cingulate cortex, thalamus, and cuneus.

      Conclusions

      These results provide support for the systems-level perspective that nAChR agonists suppress activity in default-mode network regions and enhance activity in executive control network regions in addition to reducing activation of some task-related regions. We speculate these are potential mechanisms by which nAChR agonists enhance cognition.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hurst R.
        • Rollema H.
        • Bertrand D.
        Nicotinic acetylcholine receptors: From basic science to therapeutics.
        Pharmacol Ther. 2013; 137: 22-54
        • Heishman S.J.
        • Kleykamp B.A.
        • Singleton E.G.
        Meta-analysis of the acute effects of nicotine and smoking on human performance.
        Psychopharmacology (Berl). 2010; 210: 453-469
        • Heishman S.J.
        • Taylor R.C.
        • Henningfield J.E.
        Nicotine and smoking: A review of effects on human performance.
        Exp Clin Psychopharmacol. 1994; 2: 345-395
        • Evans D.E.
        • Drobes D.J.
        Nicotine self-medication of cognitive-attentional processing.
        Addict Biol. 2009; 14: 32-42
        • Levin E.D.
        • McClernon F.J.
        • Rezvani A.H.
        Nicotinic effects on cognitive function: Behavioral characterization, pharmacological specification, and anatomic localization.
        Psychopharmacology (Berl). 2006; 184: 523-539
        • Newhouse P.A.
        • Potter A.
        • Singh A.
        Effects of nicotinic stimulation on cognitive performance.
        Curr Opin Pharmacol. 2004; 4: 36-46
        • Lerman C.
        • LeSage M.G.
        • Perkins K.A.
        • O’Malley S.S.
        • Siegel S.J.
        • Benowitz N.L.
        • Corrigall W.A.
        Translational research in medication development for nicotine dependence.
        Nat Rev Drug Discov. 2007; 6: 746-762
        • Demeter E.
        • Sarter M.
        Leveraging the cortical cholinergic system to enhance attention.
        Neuropharmacology. 2013; 64: 294-304
        • Hahn B.
        • Gold J.M.
        • Buchanan R.W.
        The potential of nicotinic enhancement of cognitive remediation training in schizophrenia.
        Neuropharmacology. 2013; 64: 185-190
        • Wilens T.E.
        • Decker M.W.
        Neuronal nicotinic receptor agonists for the treatment of attention-deficit/hyperactivity disorder: Focus on cognition.
        Biochem Pharmacol. 2007; 74: 1212-1223
        • Sarter M.
        • Parikh V.
        • Howe W.M.
        nAChR agonist-induced cognition enhancement: Integration of cognitive and neuronal mechanisms.
        Biochem Pharmacol. 2009; 78: 658-667
        • Poorthuis R.B.
        • Mansvelder H.D.
        Nicotinic acetylcholine receptors controlling attention: Behavior, circuits and sensitivity to disruption by nicotine.
        Biochem Pharmacol. 2013; 86: 1089-1098
        • Brody A.L.
        Functional brain imaging of tobacco use and dependence.
        J Psychiatr Res. 2006; 40: 404-418
        • Wise R.G.
        • Tracey I.
        The role of fMRI in drug discovery.
        J Magn Reson Imaging. 2006; 23: 862-876
        • Salmeron B.J.
        • Stein E.A.
        Pharmacological applications of magnetic resonance imaging.
        Psychopharmacol Bull. 2002; 36: 102-129
        • Stein E.A.
        fMRI: A new tool for the in vivo localization of drug actions in the brain.
        J Anal Toxicol. 2001; 25: 419-424
        • Hahn B.
        • Ross T.J.
        • Yang Y.
        • Kim I.
        • Huestis M.A.
        • Stein E.A.
        Nicotine enhances visuospatial attention by deactivating areas of the resting brain default network.
        J Neurosci. 2007; 27: 3477-3489
        • Hahn B.
        • Ross T.J.
        • Wolkenberg F.A.
        • Shakleya D.M.
        • Huestis M.A.
        • Stein E.A.
        Performance effects of nicotine during selective attention, divided attention, and simple stimulus detection: An fMRI study.
        Cereb Cortex. 2009; 19: 1990-2000
        • Lawrence N.S.
        • Ross T.J.
        • Stein E.A.
        Cognitive mechanisms of nicotine on visual attention.
        Neuron. 2002; 36: 539-548
        • Thiel C.M.
        • Zilles K.
        • Fink G.R.
        Nicotine modulates reorienting of visuospatial attention and neural activity in human parietal cortex.
        Neuropsychopharmacology. 2005; 30: 810-820
        • Beaver J.D.
        • Long C.J.
        • Cole D.M.
        • Durcan M.J.
        • Bannon L.C.
        • Mishra R.G.
        • Matthews P.M.
        The effects of nicotine replacement on cognitive brain activity during smoking withdrawal studied with simultaneous fMRI/EEG.
        Neuropsychopharmacology. 2011; 36: 1792-1800
        • Tanabe J.
        • Nyberg E.
        • Martin L.F.
        • Martin J.
        • Cordes D.
        • Kronberg E.
        • Tregellas J.R.
        Nicotine effects on default mode network during resting state.
        Psychopharmacology (Berl). 2011; 216: 287-295
        • Loughead J.
        • Ray R.
        • Wileyto E.P.
        • Ruparel K.
        • Sanborn P.
        • Siegel S.
        • et al.
        Effects of the alpha 4 beta 2 partial agonist varenicline on brain activity and working memory in abstinent smokers.
        Biol Psychiatry. 2010; 67: 715-721
        • Bentley P.
        • Driver J.
        • Dolan R.J.
        Cholinergic modulation of cognition: Insights from human pharmacological functional neuroimaging.
        Prog Neurobiol. 2011; 94: 360-388
        • Newhouse P.A.
        • Potter A.S.
        • Dumas J.A.
        • Thiel C.M.
        Functional brain imaging of nicotinic effects on higher cognitive processes.
        Biochem Pharmacol. 2011; 82: 943-951
        • Smucny J.
        • Tregellas J.
        Nicotinic modulation of intrinsic brain networks in schizophrenia.
        Biochem Pharmacol. 2013; 86: 1163-1172
        • Sutherland M.T.
        • McHugh M.J.
        • Pariyadath V.
        • Stein E.A.
        Resting state functional connectivity in addiction: Lessons learned and a road ahead.
        Neuroimage. 2012; 62: 2281-2295
      1. Sutherland MT, Liang X, Yang Y, Stein EA (in press): Beyond functional localization: Advancing the understanding of addiction-related processes by examining brain connectivity. In: Wilson SJ, editor. The Wiley-Blackwell Handbook on the Neuroscience of Addiction. Hoboken, NJ: Wiley-Blackwell.

        • Menossi H.S.
        • Goudriaan A.E.
        • de Azevedo-Marques Perico C.
        • Nicastri S.
        • de Andrade A.G.
        • D’Elia G.
        • et al.
        Neural bases of pharmacological treatment of nicotine dependence - insights from functional brain imaging: A systematic review.
        CNS Drugs. 2013; 27: 921-941
        • Jasinska A.J.
        • Zorick T.
        • Brody A.L.
        • Stein E.A.
        Dual role of nicotine in addiction and cognition: A review of neuroimaging studies in humans.
        Neuropharmacology. 2014; 84: 111-122
        • Buckner R.L.
        • Andrews-Hanna J.R.
        • Schacter D.L.
        The brain’s default network - Anatomy, function, and relevance to disease.
        Ann N Y Acad Sci. 2008; 1124: 1-38
        • Seeley W.W.
        • Menon V.
        • Schatzberg A.F.
        • Keller J.
        • Glover G.H.
        • Kenna H.
        • et al.
        Dissociable intrinsic connectivity networks for salience processing and executive control.
        J Neurosci. 2007; 27: 2349-2356
        • Fox M.D.
        • Snyder A.Z.
        • Vincent J.L.
        • Corbetta M.
        • Van Essen D.C.
        • Raichle M.E.
        The human brain is intrinsically organized into dynamic, anticorrelated functional networks.
        Proc Natl Acad Sci U S A. 2005; 102: 9673-9678
        • Sonuga-Barke E.J.
        • Castellanos F.X.
        Spontaneous attentional fluctuations in impaired states and pathological conditions: A neurobiological hypothesis.
        Neurosci Biobehav Rev. 2007; 31: 977-986
        • Menon V.
        Large-scale brain networks and psychopathology: A unifying triple network model.
        Trends Cogn Sci. 2011; 15: 483-506
        • Kelly A.M.C.
        • Uddin L.Q.
        • Biswal B.B.
        • Castellanos F.X.
        • Milham M.P.
        Competition between functional brain networks mediates behavioral variability.
        Neuroimage. 2008; 39: 527-537
        • Eickhoff S.B.
        • Laird A.R.
        • Grefkes C.
        • Wang L.E.
        • Zilles K.
        • Fox P.T.
        Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty.
        Hum Brain Mapp. 2009; 30: 2907-2926
        • Laird A.R.
        • Fox P.M.
        • Price C.J.
        • Glahn D.C.
        • Uecker A.M.
        • Lancaster J.L.
        • et al.
        ALE meta-analysis: Controlling the false discovery rate and performing statistical contrasts.
        Hum Brain Mapp. 2005; 25: 155-164
        • Turkeltaub P.E.
        • Eden G.F.
        • Jones K.M.
        • Zeffiro T.A.
        Meta-analysis of the functional neuroanatomy of single-word reading: Method and validation.
        Neuroimage. 2002; 16: 765-780
        • Lancaster J.L.
        • Tordesillas-Gutierrez D.
        • Martinez M.
        • Salinas F.
        • Evans A.
        • Zilles K.
        • et al.
        Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template.
        Hum Brain Mapp. 2007; 28: 1194-1205
        • Eickhoff S.B.
        • Bzdok D.
        • Laird A.R.
        • Kurth F.
        • Fox P.T.
        Activation likelihood estimation meta-analysis revisited.
        Neuroimage. 2012; 59: 2349-2361
        • Fox M.D.
        • Raichle M.E.
        Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging.
        Nat Rev Neurosci. 2007; 8: 700-711
        • Anticevic A.
        • Cole M.W.
        • Murray J.D.
        • Corlett P.R.
        • Wang X.J.
        • Krystal J.H.
        The role of default network deactivation in cognition and disease.
        Trends Cogn Sci. 2012; 16: 584-592
        • Eichele T.
        • Debener S.
        • Calhoun V.D.
        • Specht K.
        • Engel A.K.
        • Hugdahl K.
        • et al.
        Prediction of human errors by maladaptive changes in event-related brain networks.
        Proc Natl Acad Sci U S A. 2008; 105: 6173-6178
        • Weissman D.H.
        • Roberts K.C.
        • Visscher K.M.
        • Woldorff M.G.
        The neural bases of momentary lapses in attention.
        Nat Neurosci. 2006; 9: 971-978
        • Sarter M.
        • Hasselmo M.E.
        • Bruno J.P.
        • Givens B.
        Unraveling the attentional functions of cortical cholinergic inputs: Interactions between signal-driven and cognitive modulation of signal detection.
        Brain Res Brain Res Rev. 2005; 48: 98-111
        • Hasselmo M.E.
        • McGaughy J.
        High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation.
        Prog Brain Res. 2004; 145: 207-231
        • Giessing C.
        • Thiel C.M.
        • Rosler F.
        • Fink G.R.
        The modulatory effects of nicotine on parietal cortex activity in a cued target detection task depend on cue reliability.
        Neuroscience. 2006; 137: 853-864
        • Jacobsen L.K.
        • Mencl W.E.
        • Constable R.T.
        • Westerveld M.
        • Pugh K.R.
        Impact of smoking abstinence on working memory neurocircuitry in adolescent daily tobacco smokers.
        Psychopharmacology (Berl). 2007; 193: 557-566
        • Xu J.
        • Mendrek A.
        • Cohen M.S.
        • Monterosso J.
        • Simon S.
        • Jarvik M.
        • et al.
        Effect of cigarette smoking on prefrontal cortical function in nondeprived smokers performing the Stroop Task.
        Neuropsychopharmacology. 2007; 32: 1421-1428
        • Craig A.D.
        How do you feel--now? The anterior insula and human awareness.
        Nat Rev Neurosci. 2009; 10: 59-70
        • Critchley H.D.
        • Wiens S.
        • Rotshtein P.
        • Ohman A.
        • Dolan R.J.
        Neural systems supporting interoceptive awareness.
        Nat Neurosci. 2004; 7: 189-195
        • Bressler S.L.
        • Menon V.
        Large-scale brain networks in cognition: Emerging methods and principles.
        Trends Cogn Sci. 2010; 14: 277-290
        • Dosenbach N.U.F.
        • Visscher K.M.
        • Palmer E.D.
        • Miezin F.M.
        • Wenger K.K.
        • Kang H.S.C.
        • et al.
        A core system for the implementation of task sets.
        Neuron. 2006; 50: 799-812
        • Greicius M.
        Resting-state functional connectivity in neuropsychiatric disorders.
        Curr Opin Neurol. 2008; 21: 424-430
        • Myers C.S.
        • Taylor R.C.
        • Moolchan E.T.
        • Heishman S.J.
        Dose-related enhancement of mood and cognition in smokers administered nicotine nasal spray.
        Neuropsychopharmacology. 2008; 33: 588-598
        • Patterson F.
        • Jepson C.
        • Loughead J.
        • Perkins K.
        • Strasser A.A.
        • Siegel S.
        • et al.
        Working memory deficits predict short-term smoking resumption following brief abstinence.
        Drug Alcohol Depend. 2010; 106: 61-64
        • Patterson F.
        • Jepson C.
        • Strasser A.A.
        • Loughead J.
        • Perkins K.A.
        • Gur R.C.
        • et al.
        Varenicline improves mood and cognition during smoking abstinence.
        Biol Psychiatry. 2009; 65: 144-149
        • Falcone M.
        • Wileyto E.P.
        • Ruparel K.
        • Gerraty R.T.
        • Laprate L.
        • Detre J.A.
        • et al.
        Age-related differences in working memory deficits during nicotine withdrawal.
        Addict Biol. 2014; 19: 907-917
        • Bough K.J.
        • Lerman C.
        • Rose J.E.
        • McClernon F.J.
        • Kenny P.J.
        • Tyndale R.F.
        • et al.
        Biomarkers for smoking cessation.
        Clin Pharmacol Ther. 2013; 93: 526-538
        • Jennings R.G.
        • Van Horn J.D.
        Publication bias in neuroimaging research: Implications for meta-analyses.
        Neuroinformatics. 2012; 10: 67-80
        • Rosenthal R.
        The file drawer problem and tolerance for null results.
        Psychol Bull. 1979; 86: 638-641
        • Chase H.W.
        • Eickhoff S.B.
        • Laird A.R.
        • Hogarth L.
        The neural basis of drug stimulus processing and craving: An activation likelihood estimation meta-analysis.
        Biol Psychiatry. 2011; 70: 785-793
        • Engelmann J.M.
        • Versace F.
        • Robinson J.D.
        • Minnix J.A.
        • Lam C.Y.
        • Cui Y.
        • et al.
        Neural substrates of smoking cue reactivity: A meta-analysis of fMRI studies.
        Neuroimage. 2012; 60: 252-262
        • Kuhn S.
        • Gallinat J.
        Common biology of craving across legal and illegal drugs - a quantitative meta-analysis of cue-reactivity brain response.
        Eur J Neurosci. 2011; 33: 1318-1326
        • Wang Z.
        • Faith M.
        • Patterson F.
        • Tang K.
        • Kerrin K.
        • Wileyto E.P.
        • et al.
        Neural substrates of abstinence-induced cigarette cravings in chronic smokers.
        J Neurosci. 2007; 27: 14035-14040
        • Yalachkov Y.
        • Kaiser J.
        • Naumer M.J.
        Functional neuroimaging studies in addiction: Multisensory drug stimuli and neural cue reactivity.
        Neurosci Biobehav Rev. 2012; 36: 825-835
        • Garavan H.
        Insula and drug cravings.
        Brain Struct Funct. 2010; 214: 593-601
        • Naqvi N.H.
        • Bechara A.
        The hidden island of addiction: The insula.
        Trends Neurosci. 2009; 32: 56-67
        • Naqvi N.H.
        • Rudrauf D.
        • Damasio H.
        • Bechara A.
        Damage to the insula disrupts addiction to cigarette smoking.
        Science. 2007; 315: 531-534
        • Paulus M.P.
        Decision-making dysfunctions in psychiatry--altered homeostatic processing?.
        Science. 2007; 318: 602-606
        • Verdejo-Garcia A.
        • Clark L.
        • Dunn B.D.
        The role of interoception in addiction: A critical review.
        Neurosci Biobehav Rev. 2012; 36: 1857-1869
        • Lerman C.
        • Gu H.
        • Loughead J.
        • Ruparel K.
        • Yang Y.
        • Stein E.A.
        Large-scale brain network coupling predicts acute nicotine abstinence effects on craving and cognitive function.
        JAMA Psychiatry. 2014; 71: 523-530
        • Sutherland M.T.
        • Carroll A.J.
        • Salmeron B.J.
        • Ross T.J.
        • Hong L.E.
        • Stein E.A.
        Down-regulation of amygdala and insula functional circuits by varenicline and nicotine in abstinent cigarette smokers.
        Biol Psychiatry. 2013; 74: 538-546
        • Konova A.B.
        • Moeller S.J.
        • Goldstein R.Z.
        Common and distinct neural targets of treatment: Changing brain function in substance addiction.
        Neurosci Biobehav Rev. 2013; 37: 2806-2817
        • Craig A.D.
        The sentient self.
        Brain Struct Funct. 2010; 214: 563-577
        • Craig A.D.
        Forebrain emotional asymmetry: A neuroanatomical basis?.
        Trends Cogn Sci. 2005; 9: 566-571
        • Tang D.W.
        • Fellows L.K.
        • Small D.M.
        • Dagher A.
        Food and drug cues activate similar brain regions: A meta-analysis of functional MRI studies.
        Physiol Behav. 2012; 106: 317-324
        • Morales A.M.
        • Ghahremani D.
        • Kohno M.
        • Hellemann G.S.
        • London E.D.
        Cigarette exposure, dependence, and craving are related to insula thickness in young adult smokers.
        Neuropsychopharmacology. 2014; 39: 1816-1822
        • Garavan H.
        • Stout J.C.
        Neurocognitive insights into substance abuse.
        Trends Cogn Sci. 2005; 9: 195-201
        • Chambers C.D.
        • Garavan H.
        • Bellgrove M.A.
        Insights into the neural basis of response inhibition from cognitive and clinical neuroscience.
        Neurosci Biobehav Rev. 2009; 33: 631-646
        • Murphy K.
        • Dixon V.
        • LaGrave K.
        • Kaufman J.
        • Risinger R.
        • Bloom A.
        • Garavan H.
        A validation of event-related FMRI comparisons between users of cocaine, nicotine, or cannabis and control subjects.
        Am J Psychiatry. 2006; 163: 1245-1251
        • Shirer W.R.
        • Ryali S.
        • Rykhlevskaia E.
        • Menon V.
        • Greicius M.D.
        Decoding subject-driven cognitive states with whole-brain connectivity patterns.
        Cereb Cortex. 2012; 22: 158-165