Advertisement

Discrete Alterations of Brain Network Structural Covariance in Individuals at Ultra-High Risk for Psychosis

Published:November 10, 2014DOI:https://doi.org/10.1016/j.biopsych.2014.10.023

      Abstract

      Background

      Investigation of aberrant large-scale brain networks offers novel insight into the role these networks play in diverse psychiatric disorders such as schizophrenia. Although studies report altered functional brain connectivity in participants at ultra-high risk (UHR) for psychosis, it is unclear whether these alterations extend to structural brain networks.

      Methods

      Whole-brain structural covariance patterns of 133 participants at UHR for psychosis (51 of whom subsequently developed psychosis) and 65 healthy control (HC) subjects were studied. Following data preprocessing (using VBM8 toolbox), the mean signal in seed regions relating to specific networks (visual, auditory, motor, speech, semantic, executive control, salience, and default-mode) were extracted, and voxel-wise analyses of covariance were conducted to compare the association between whole-brain signal and each seed region for UHR and HC individuals. The UHR participants who transitioned to psychosis were compared with the UHR participants who did not.

      Results

      Significantly reduced structural covariance was observed in the UHR sample compared with the HC sample for the default-mode network, and increased covariance was observed for the motor and executive control networks. When the UHR participants who transitioned to psychosis were compared with the UHR participants who did not, aberrant structural covariance was observed in the salience, executive control, auditory, and motor networks.

      Conclusions

      Whole-brain structural covariance analyses revealed subtle changes of connectivity of the default-mode, executive control, salience, motor, and auditory networks in UHR individuals for psychosis. Although we found significant differences, these are small changes and tend to reflect largely intact structural networks.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hulshoff Pol H.E.
        • Kahn R.S.
        What happens after the first episode? A review of progressive brain changes in chronically ill patients with schizophrenia.
        Schizophr Bull. 2008; 34: 354-366
        • Yung A.R.
        • McGorry P.D.
        The prodromal phase of first-episode psychosis: Past and current conceptualizations.
        Schizophr Bull. 1996; 22: 353-370
        • Fusar-Poli P.
        • Bonoldi I.
        • Yung A.R.
        • Borgwardt S.
        • Kempton M.J.
        • Valmaggia L.
        • et al.
        Predicting psychosis meta-analysis of transition outcomes in individuals at high clinical risk.
        Arch Gen Psychiatry. 2012; 69: 220-229
        • Jung W.H.
        • Borgwardt S.
        • Fusar-Poli P.
        • Kwon J.S.
        Gray matter volumetric abnormalities associated with the onset of psychosis.
        Front Psychiatry. 2012; 3: 101
        • McGorry P.D.
        • Yung A.R.
        • Phillips L.J.
        • Yuen H.P.
        • Francey S.
        • Cosgrave E.M.
        • et al.
        Randomized controlled trial of interventions designed to reduce the risk of progression to first-episode psychosis in a clinical sample with subthreshold symptoms.
        Arch Gen Psychiatry. 2002; 59: 921-928
        • Wood S.J.
        • Yung A.R.
        • McGorry P.D.
        • Pantelis C.
        Neuroimaging and treatment evidence for clinical staging in psychotic disorders: From the at-risk mental state to chronic schizophrenia.
        Biol Psychiatry. 2011; 70: 619-625
        • Wood S.J.
        • Reniers RLEP
        • Heinze K.
        Neuroimaging findings in the at-risk mental state: A review of recent literature.
        Can J Psychiatry. 2013; 58: 13-18
        • Fusar-Poli P.
        • Borgwardt S.
        • Crescini A.
        • Deste G.
        • Kempton M.J.
        • Lawrie S.
        • et al.
        Neuroanatomy of vulnerability to psychosis: A voxel-based meta-analysis.
        Neurosci Biobehav Rev. 2011; 35: 1175-1185
        • Fusar-Poli P.
        • Radua J.
        • McGuire P.
        • Borgwardt S.
        Neuroanatomical maps of psychosis onset: Voxel-wise meta-analysis of antipsychotic-naive VBM studies.
        Schizophr Bull. 2012; 38: 1297-1307
        • Mechelli A.
        • Riecher-Rossler A.
        • Meisenzahl E.M.
        • Tognin S.
        • Wood S.J.
        • Borgwardt S.J.
        • et al.
        Neuroanatomical abnormalities that predate the onset of psychosis: A multicenter study.
        Arch Gen Psychiatry. 2011; 68: 489-495
        • Takahashi T.
        • Wood S.J.
        • Yung A.R.
        • Phillips L.J.
        • Soulsby B.
        • McGorry P.D.
        • et al.
        Insular cortex gray matter changes in individuals at ultra-high-risk of developing psychosis.
        Schizophr Res. 2009; 111: 94-102
        • Tognin S.
        • Riecher-Rössler A.
        • Meisenzahl E.M.
        • Wood S.J.
        • Hutton C.
        • Borgwardt S.J.
        • et al.
        Reduced parahippocampal cortical thickness in subjects at ultra-high risk for psychosis.
        Psychol Med. 2014; 44: 489-498
        • Takahashi T.
        • Wood S.J.
        • Yung A.R.
        • Walterfang M.
        • Phillips L.J.
        • Soulsby B.
        • et al.
        Superior temporal gyrus volume in antipsychotic-naive people at risk of psychosis.
        Br J Psychiatry. 2010; 196: 206-211
        • Chen Z.
        • Deng W.
        • Gong Q.
        • Huang C.
        • Jiang L.
        • Li M.
        • et al.
        Extensive brain structural network abnormality in first-episode treatment-naive patients with schizophrenia: Morphometrical and covariation study.
        Psychol Med. 2014; 44: 2489-2501
        • Lord L.-D.
        • Allen P.
        • Expert P.
        • Howes O.
        • Lambiotte R.
        • McGuire P.
        • et al.
        Characterization of the anterior cingulate’s role in the at-risk mental state using graph theory.
        Neuroimage. 2011; 56: 1531-1539
        • Menon V.
        Large-scale brain networks and psychopathology: A unifying triple network model.
        Trends Cogn Sci. 2011; 15: 483-506
        • Menon V.
        • Uddin L.
        Saliency, switching, attention and control: A network model of insula function.
        Brain Struct Funct. 2010; 214: 655-667
        • Palaniyappan L.
        • Liddle P.F.
        Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular dysfunction.
        J Psychiatry Neurosci. 2012; 37: 17-27
        • Garrity A.G.
        • Pearlson G.D.
        • McKiernan K.
        • Lloyd D.
        • Kiehl K.A.
        • Calhoun V.D.
        Aberrant “default mode” functional connectivity in schizophrenia.
        Am J Psychiatry. 2007; 164: 450-457
        • Whitfield-Gabrieli S.
        • Thermenos H.W.
        • Milanovic S.
        • Tsuang M.T.
        • Faraone S.V.
        • McCarley R.W.
        • et al.
        Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia.
        Proc Natl Acad Sci U S A. 2009; 106: 1279-1284
        • van Buuren M.
        • Vink M.
        • Kahn R.S.
        Default-mode network dysfunction and self-referential processing in healthy siblings of schizophrenia patients.
        Schizophr Res. 2012; 142: 237-243
        • Jukuri T.
        • Kiviniemi V.
        • Nikkinen J.
        • Miettunen J.
        • Mäki P.
        • Jääskeläinen E.
        • et al.
        Default mode network in young people with familial risk for psychosis—the Oulu Brain and Mind Study.
        Schizophr Res. 2013; 143: 239-245
        • Jang J.H.
        • Jung W.H.
        • Choi J.-S.
        • Choi C.-H.
        • Kang D.-H.
        • Shin N.Y.
        • et al.
        Reduced prefrontal functional connectivity in the default mode network is related to greater psychopathology in subjects with high genetic loading for schizophrenia.
        Schizophr Res. 2011; 127: 58-65
        • Nelson B.
        • Whitford T.J.
        • Lavoie S.
        • Sass L.A.
        What are the neurocognitive correlates of basic self-disturbance in schizophrenia? Integrating phenomenology and neurocognition: Part 1 (Source monitoring deficits).
        Schizophr Res. 2014; 152: 12-19
        • Nelson B.
        • Whitford T.J.
        • Lavoie S.
        • Sass L.A.
        What are the neurocognitive correlates of basic self-disturbance in schizophrenia? Integrating phenomenology and neurocognition: Part 2 (Aberrant salience).
        Schizophr Res. 2014; 152: 20-27
        • Wotruba D.
        • Michels L.
        • Buechler R.
        • Metzler S.
        • Theodoridou A.
        • Gerstenberg M.
        • et al.
        Aberrant coupling within and across the default mode, task-positive, and salience network in subjects at risk for psychosis.
        Schizophr Bull. 2014; 40: 1095-1104
        • Dandash O.
        • Fornito A.
        • Lee J.
        • Keefe R.S.E.
        • Chee M.W.L.
        • Adcock R.A.
        • et al.
        Altered striatal functional connectivity in subjects with an at-risk mental state for psychosis.
        Schizophr Bull. 2014; 40: 904-913
        • Mechelli A.
        • Friston K.J.
        • Frackowiak R.S.
        • Price C.J.
        Structural covariance in the human cortex.
        J Neurosci. 2005; 25: 8303-8310
        • Alexander-Bloch A.
        • Giedd J.N.
        • Bullmore E.
        Imaging structural co-variance between human brain regions.
        Nat Rev Neurosci. 2013; 14: 322-336
        • Pettersson-Yeo W.
        • Allen P.
        • Benetti S.
        • McGuire P.
        • Mechelli A.
        Dysconnectivity in schizophrenia: Where are we now?.
        Neurosci Biobehav Rev. 2011; 35: 1110-1124
        • Modinos G.
        • Vercammen A.
        • Mechelli A.
        • Knegtering H.
        • McGuire P.K.
        • Aleman A.
        Structural covariance in the hallucinating brain: A voxel-based morphometry study.
        J Psychiatry Neurosci. 2009; 34: 465-469
        • Zielinski B.A.
        • Gennatas E.D.
        • Zhou J.A.
        • Seeley W.W.
        Network-level structural covariance in the developing brain.
        Proc Natl Acad Sci U S A. 2010; 107: 18191-18196
      1. American Psychiatric Association (2000): Diagnostic and statistical manual of mental disorders, 4th ed, text rev. Washington, DC: American Psychiatric Press

        • Curtis V.A.
        • Bullmore E.T.
        • Brammer M.J.
        • Wright I.C.
        • Williams S.C.R.
        • Morris R.G.
        • et al.
        Attenuated frontal activation during a verbal fluency task in patients with schizophrenia.
        Am J Psychiatry. 1998; 155: 1056-1063
        • Wolff A.L.
        • O’Driscoll G.A.
        Motor deficits and schizophrenia: The evidence from neuroleptic-naive patients and populations at risk.
        J Psychiatry Neurosci. 1999; 24: 304-314
        • Yung A.R.
        • Phillips L.J.
        • Yuen H.P.
        • Francey S.M.
        • McFarlane C.A.
        • Hallgren M.
        • McGorry P.D.
        Psychosis prediction: 12-month follow up of a high-risk (“prodromal”) group.
        Schizophr Res. 2003; 60: 21-32
        • Yung A.R.
        • Yuen H.P.
        • McGorry P.D.
        • Phillips L.J.
        • Kelly D.
        • Dell Olio M.
        • et al.
        Mapping the onset of psychosis: The comprehensive assessment of at-risk mental states.
        Aust N Z J Psychiatry. 2005; 39: 964-971
        • Yung A.R.
        • Phillips L.J.
        • Yuen H.P.
        • McGorry P.D.
        Risk factors for psychosis in an ultra high-risk group: Psychopathology and clinical features.
        Schizophr Res. 2004; 67: 131-142
        • Nelson B.
        • Yuen H.P.
        • Wood S.J.
        • Lin A.
        • Spiliotacopoulos D.
        • Bruxner A.
        • et al.
        Long-term follow-up of a group at ultra high risk (“prodromal”) for psychosis: The PACE 400 study.
        JAMA Psychiatry. 2013; 70: 793-802
        • Andreasen N.M.
        • Flaum M.
        • Arndt S.
        The Comprehensive Assessment of Symptoms and History (CASH): An instrument for assessing diagnosis and psychopathology.
        Arch Gen Psychiatry. 1992; 49: 615-623
        • Rhoades H.M.
        • Overall J.E.
        The semistructured BPRS interview and rating guide.
        Psychopharmacol Bull. 1988; 24: 101-104
        • Andreasen N.C.
        Scale for the Assessment of Negative Symptoms (SANS).
        University of Iowa, Iowa City, IA1984
        • Ashburner J.
        • Friston K.J.
        Unified segmentation.
        Neuroimage. 2005; 26: 839-851
      2. Brett M, Anton J, Valabregue R, Poline J (2002): Region of interest analysis using an SPM toolbox. Abstract presented at the 8th International Conference on Functional Mapping of the Human Brain, June 2-6, 2002, Sendai, Japan. Available on CD-ROM. Neuroimage 16.

        • Davis M.H.
        • Johnsrude I.S.
        Hierarchical processing in spoken language comprehension.
        J Neurosci. 2003; 23: 3423-3431
        • Seeley W.W.
        • Crawford R.K.
        • Zhou J.
        • Miller B.L.
        • Greicius M.D.
        Neurodegenerative diseases target large-scale human brain networks.
        Neuron. 2009; 62: 42-52
        • Seeley W.W.
        • Menon V.
        • Schatzberg A.F.
        • Keller J.
        • Glover G.H.
        • Kenna H.
        • et al.
        Dissociable intrinsic connectivity networks for salience processing and executive control.
        J Neurosci. 2007; 27: 2349-2356
        • Damoiseaux J.S.
        • Rombouts S.A.
        • Barkhof F.
        • Scheltens P.
        • Stam C.J.
        • Smith S.M.
        • Beckmann C.F.
        Consistent resting-state networks across healthy subjects.
        Proc Natl Acad Sci U S A. 2006; 103: 13848-13853
        • Smith S.M.
        • Nichols T.E.
        Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference.
        Neuroimage. 2009; 44: 83-98
        • Fornito A.
        • Yung A.R.
        • Wood S.J.
        • Phillips L.J.
        • Nelson B.
        • Cotton S.
        • et al.
        Anatomic abnormalities of the anterior cingulate cortex before psychosis onset: An MRI study of ultra-high-risk individuals.
        Biol Psychiatry. 2008; 64: 758-765
        • Soriano-Mas C.
        • Harrison B.J.
        • Pujol J.
        • López-Solà M.
        • Hernández-Ribas R.
        • Alonso P.
        • et al.
        Structural covariance of the neostriatum with regional gray matter volumes.
        Brain Struct Funct. 2013; 218: 697-709

      Linked Article

      • Network Dysconnectivity: A Psychosis-Triggering Mechanism?
        Biological PsychiatryVol. 77Issue 11
        • Preview
          It has become clear over the past 30 years that there is no discrete “lesion” underlying the symptoms of schizophrenia and related disorders. Rather, many investigators have come to view schizophrenia as fundamentally a disorder of dysconnection within and between certain functional networks in the brain (1). At this broad level of description, understanding the symptoms of psychosis as emanating from dyscoordination in multiple, interacting circuits has intuitive appeal that links key concepts and findings in the field from the time of Bleuler, with its focus on associative loosening as a basic symptom, to the current day, with its focus on functional neuroimaging, graph analytic approaches, and mechanisms of synaptic plasticity.
        • Full-Text
        • PDF