Advertisement

Prefrontal Cortical Gamma-Aminobutyric Acid Transmission and Cognitive Function: Drawing Links to Schizophrenia from Preclinical Research

Published:September 23, 2014DOI:https://doi.org/10.1016/j.biopsych.2014.09.007

      Abstract

      Cognitive dysfunction in schizophrenia is one of the most pervasive and debilitating aspects of the disorder. Among the numerous neural abnormalities that may contribute to schizophrenia symptoms, perturbations in markers for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), particularly within the frontal lobes, are some of the most reliable alterations observed at postmortem examination. However, how prefrontal GABA dysfunction contributes to cognitive impairment in schizophrenia remains unclear. We provide an overview of postmortem GABAergic perturbations in the brain affected by schizophrenia and describe circumstantial evidence linking these alterations to cognitive dysfunction. In addition, we conduct a survey of studies using neurodevelopmental, genetic, and pharmacologic rodent models that induce schizophrenia-like cognitive impairments, highlighting the convergence of these mechanistically distinct approaches to prefrontal GABAergic disruption. We review preclinical studies that have directly targeted prefrontal cortical GABAergic transmission using local application of GABAA receptor antagonists. These studies have provided an important link between GABA transmission and cognitive dysfunction in schizophrenia because they show that reducing prefrontal inhibitory transmission induces various cognitive, emotional, and dopaminergic abnormalities that resemble aspects of the disorder. These converging clinical and preclinical findings provide strong support for the idea that perturbations in GABA signaling drive certain forms of cognitive dysfunction in schizophrenia. Future studies using this approach will yield information to refine further a putative “GABA hypothesis” of schizophrenia.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Green M.F.
        What are the functional consequences of neurocognitive deficits in schizophrenia?.
        Am J Psychiatry. 1996; 153: 321-330
        • Laruelle M.
        • Abi-Dargham A.
        • Van Dyck C.H.
        • Gil R.
        • D’Souza C.D.
        • Erdos J.
        • et al.
        Single photon emission computerized tomography imaging of schizophrenic subjects.
        Proc Natl Acad Sci U S A. 1996; 93: 9235-9240
        • Abi-Dargham A.
        • Gil R.
        • Krystal J.
        • Baldwin R.M.
        • Seibyl J.P.
        • Bowers M.
        • et al.
        Increased striatal dopamine transmission in schizophrenia: Confirmation in a second cohort.
        Am J Psychiatry. 1998; 155: 761-767
        • Reichenberg A.
        • Caspi A.
        • Harrington H.
        • Houts R.
        • Keefe R.S.E.
        • Murray R.M.
        • et al.
        Static and dynamic cognitive deficits in childhood preceding adult schizophrenia: A 30-year study.
        Am J Psychiatry. 2010; 167: 160-169
        • Keefe R.S.
        • Silva S.G.
        • Perkins D.O.
        • Lieberman J.A.
        The effects of atypical antipsychotic drugs on neurocognitive impairment in schizophrenia: A review and meta-analysis.
        Schizophr Bull. 1999; 25: 201-222
        • Akbarian S.
        • Kim J.J.
        • Potkin S.G.
        • Hagman J.O.
        • Tafazzoli A.
        • Bunney W.E.
        • Jones E.G.
        Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics.
        Arch Gen Psychiatry. 1995; 52: 258-266
        • Hashimoto T.
        • Bazmi H.H.
        • Mirnics K.
        • Wu Q.
        • Sampson A.R.
        • Lewis D.A.
        Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia.
        Am J Psychiatry. 2008; 165: 479-489
        • Fung S.J.
        • Webster M.J.
        • Sivagnanasundaram S.
        • Duncan C.
        • Elashoff M.
        • Weickert C.S.
        Expression of interneuron markers in the dorsolateral prefrontal cortex of the developing human and in schizophrenia.
        Am J Psychiatry. 2010; 167: 1479-1488
        • Hashimoto T.
        • Volk D.W.
        • Eggan S.M.
        • Mirnics K.
        • Pierri J.N.
        • Sun Z.
        • et al.
        Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia.
        J Neurosci. 2003; 23: 6315-6326
        • Guidotti A.
        • Auta J.
        • Davis J.
        • Gerevini V.
        • Dwivedi Y.
        • Grayson D.R.
        • et al.
        Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: A postmortem brain study.
        Arch Gen Psychiatry. 2000; 57: 1061-1069
        • Thompson M.
        • Weickert C.S.
        • Wyatt E.
        • Webster M.J.
        Decreased glutamic acid decarboxylase 67 mRNA expression in multiple brain areas of patients with schizophrenia and mood disorders.
        J Psychiatr Res. 2009; 43: 970-977
        • Lewis D.A.
        • González-Burgos G.
        Neuroplasticity of neocortical circuits in schizophrenia.
        Neuropsychopharmacology. 2008; 33: 141-165
        • Sohal V.S.
        • Zhang F.
        • Yizhar O.
        • Deisseroth K.
        Parvalbumin neurons and gamma rhythms enhance cortical circuit performance.
        Nature. 2009; 459: 698-702
        • Carlén M.
        • Meletis K.
        • Siegle J.H.
        • Cardin J.A.
        • Futai K.
        • Vierling-Claassen D.
        • et al.
        A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior.
        Mol Psychiatry. 2011; 17: 1-12
        • Beneyto M.
        • Abbott A.
        • Hashimoto T.
        • Lewis D.A.
        Lamina-specific alterations in cortical GABAA receptor subunit expression in schizophrenia.
        Cereb Cortex. 2011; 21: 999-1011
        • Haenschel C.
        • Bittner R.A.
        • Waltz J.
        • Haertling F.
        • Wibral M.
        • Singer W.
        • et al.
        Cortical oscillatory activity is critical for working memory as revealed by deficits in early-onset schizophrenia.
        J Neurosci. 2009; 29: 9481-9489
        • Rowland L.M.
        • Kontson K.
        • West J.
        • Edden R.A.
        • Zhu H.
        • Wijtenburg S.A.
        • et al.
        In vivo measurements of glutamate, GABA, and NAAG in schizophrenia.
        Schizophr Bull. 2013; 39: 1096-1104
        • Silver H.
        • Feldman P.
        Evidence for sustained attention and working memory in schizophrenia sharing a common mechanism.
        J Neuropsychiatry Clin Neurosci. 2005; 17: 391-398
        • Goto N.
        • Yoshimura R.
        • Kakeda S.
        • Moriya J.
        • Hayashi K.
        • Ikenouchi-Sugita A.
        • et al.
        Associations between plasma levels of 3-methoxy-4-hydroxyphenylglycol (MHPG) and negative symptoms or cognitive impairments in early-stage schizophrenia.
        Hum Psychopharmacol. 2009; 24: 639-645
        • Daskalakis Z.J.
        • Christensen B.K.
        • Chen R.
        • Fitzgerald P.B.
        • Zipursky R.B.
        • Kapur S.
        Evidence for impaired cortical inhibition in schizophrenia using transcranial magnetic stimulation.
        Arch Gen Psychiatry. 2002; 59: 347-354
        • Kegeles L.S.
        • Mao X.
        • Stanford A.D.
        • Girgis R.
        • Ojeil N.
        • Xu X.
        • et al.
        Elevated prefrontal cortex γ-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy.
        Arch Gen Psychiatry. 2012; 69: 1-11
        • Ongür D.
        • Prescot A.P.
        • McCarthy J.
        • Cohen B.M.
        • Renshaw P.F.
        Elevated gamma-aminobutyric acid levels in chronic schizophrenia.
        Biol Psychiatry. 2010; 68: 667-670
        • Petroff O.A.C.
        GABA and glutamate in the human brain.
        Neurosci. 2002; 8: 562-573
        • Weinberger D.R.
        • Berman K.F.
        • Zec R.F.
        Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia.
        Arch Gen Psychiatry. 1986; 43: 114-124
        • Minzenberg M.J.
        • Laird A.R.
        • Thelen S.
        • Carter C.S.
        • Glahn D.C.
        Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia.
        Arch Gen Psychiatry. 2009; 66: 811-822
        • Pezze M.
        • McGarrity S.
        • Mason R.
        • Fone K.C.
        • Bast T.
        Too little and too much: Hypoactivation and disinhibition of medial prefrontal cortex cause attentional deficits.
        J Neurosci. 2014; 34: 7931-7946
        • Attwell D.
        • Iadecola C.
        The neural basis of functional brain imaging signals.
        Trends Neurosci. 2002; 25: 621-625
        • Logothetis N.K.
        • Pauls J.
        • Augath M.
        • Trinath T.
        • Oeltermann A.
        Neurophysiological investigation of the basis of the fMRI signal.
        Nature. 2001; 412: 150-157
        • Logothetis N.K.
        • Wandell B.A.
        Interpreting the BOLD signal.
        Annu Rev Physiol. 2004; 66: 735-769
        • Coyle J.
        NMDA receptor and schizophrenia: A brief history.
        Schizophr Bull. 2012; 38: 920-926
        • Moghaddam B.
        • Krystal J.H.
        Capturing the angel in “angel dust”: Twenty years of translational neuroscience studies of NMDA receptor antagonists in animals and humans.
        Schizophr Bull. 2012; 38: 942-949
        • Moghaddam B.
        • Javitt D.
        From revolution to evolution: The glutamate hypothesis of schizophrenia and its implication for treatment.
        Neuropsychopharmacology. 2011; 37: 4-15
        • Lisman J.
        Excitation, inhibition, local oscillations, or large-scale loops: What causes the symptoms of schizophrenia?.
        Curr Opin Neurobiol. 2012; 22: 537-544
        • O’Donnell P.
        Cortical interneurons, immune factors and oxidative stress as early targets for schizophrenia.
        Eur J Neurosci. 2012; 35: 1866-1870
        • Stokes P.R.A.
        • Myers J.F.
        • Kalk N.J.
        • Watson B.J.
        • Erritzoe D.
        • Wilson S.J.
        • et al.
        Acute increases in synaptic GABA detectable in the living human brain: A [(11)C]Ro15-4513 PET study.
        Neuroimage. 2014; 99: 158-165
        • Rudy B.
        • Fishell G.
        • Lee S.
        • Hjerling-Leffler J.
        Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons.
        Dev Neurobiol. 2011; 71: 45-61
        • Conde F.
        • Lund J.S.
        • Jacobowitz D.M.
        • Baimbrldge K.G.
        • Lewis D.A.
        Local circuit neurons immunoreactive for calretinin, calbindin D-28k or parvalbumin in monkey prefrontal cortex: Distribution and morphology.
        J Comp Neurol. 1994; 116: 95-116
        • Povysheva N.V.
        • Zaitsev A.V.
        • Rotaru D.C.
        • Gonzalez-Burgos G.
        • Lewis D.A.
        • Krimer L.S.
        Parvalbumin-positive basket interneurons in monkey and rat prefrontal cortex.
        J Neurophysiol. 2008; 100: 2348-2360
        • Brown A.
        Prenatal infection as a risk factor for schizophrenia.
        Schizophr Bull. 2006; 32: 200-202
        • Richetto J.
        • Calabrese F.
        • Riva M.A.
        • Meyer U.
        Prenatal immune activation induces maturation-dependent alterations in the prefrontal GABAergic transcriptome.
        Schizophr Bull. 2014; 40: 351-361
        • Lodge D.J.
        • Behrens M.M.
        • Grace A.A.
        A loss of parvalbumin-containing interneurons is associated with diminished oscillatory activity in an animal model of schizophrenia.
        J Neurosci. 2009; 29: 2344-2354
        • Lipska B.K.
        • Lerman D.N.
        • Khaing Z.Z.
        • Weickert C.S.
        • Weinberger D.R.
        Gene expression in dopamine and GABA systems in an animal model of schizophrenia: Effects of antipsychotic drugs.
        Eur J Neurosci. 2003; 18: 391-402
        • François J.
        • Ferrandon A.
        • Koning E.
        • Angst M.-J.
        • Sandner G.
        • Nehlig A.
        Selective reorganization of GABAergic transmission in neonatal ventral hippocampal-lesioned rats.
        Int J Neuropsychopharmacol. 2009; 12: 1097-1110
        • Tseng K.Y.
        • Amin F.
        • Lewis B.L.
        • O’Donnell P.
        Altered prefrontal cortical metabolic response to mesocortical activation in adult animals with a neonatal ventral hippocampal lesion.
        Biol Psychiatry. 2006; 60: 585-590
        • O’Donnell P.
        • Lewis B.L.
        • Weinberger D.R.
        • Lipska B.K.
        Neonatal hippocampal damage alters electrophysiological properties of prefrontal cortical neurons in adult rats.
        Cereb Cortex. 2002; 12: 975-982
        • Huang Z.J.
        • Di Cristo G.
        • Ango F.
        Development of GABA innervation in the cerebral and cerebellar cortices.
        Nat Rev Neurosci. 2007; 8: 673-686
        • Ryan R.T.
        • Bhardwaj S.K.
        • Tse Y.C.
        • Srivastava L.K.
        • Wong T.P.
        Opposing alterations in excitation and inhibition of layer 5 medial prefrontal cortex pyramidal neurons following neonatal ventral hippocampal lesion.
        Cereb Cortex. 2013; 23: 1198-1207
        • Esmaeili B.
        • Grace A.A.
        Afferent drive of medial prefrontal cortex by hippocampus and amygdala is altered in MAM-treated rats: Evidence for interneuron dysfunction.
        Neuropsychopharmacology. 2013; 38: 1871-1880
        • Gruber A.J.
        • Calhoon G.G.
        • Shusterman I.
        • Schoenbaum G.
        • Roesch M.R.
        • O’Donnell P.
        More is less: A disinhibited prefrontal cortex impairs cognitive flexibility.
        J Neurosci. 2010; 30: 17102-17110
        • Cherlyn S.Y.T.
        • Woon P.S.
        • Liu J.J.
        • Ong W.Y.
        • Tsai G.C.
        • Sim K.
        Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder: A decade of advance.
        Neurosci Biobehav Rev. 2010; 34: 958-977
        • Rossignol E.
        Genetics and function of neocortical GABAergic interneurons in neurodevelopmental disorders.
        Neural Plast. 2011; 2011: 1-25
        • St Clair D.
        • Blackwood D.
        • Muir W.
        • Carothers A.
        • Walker M.
        • Spowart G.
        • et al.
        Association within a family of balanced autosomal translocation with major mental illness.
        Lancet. 1990; 336: 13-16
        • Shen S.
        • Lang B.
        • Nakamoto C.
        • Zhang F.
        • Pu J.
        • Kuan S.-L.
        • et al.
        Schizophrenia-related neural and behavioral phenotypes in transgenic mice expressing truncated Disc1.
        J Neurosci. 2008; 28: 10893-10904
        • Lee F.H.F.
        • Zai C.C.
        • Cordes S.P.
        • Roder J.C.
        • Wong A.H.C.
        Abnormal interneuron development in disrupted-in-schizophrenia-1 L100P mutant mice.
        Mol Brain. 2013; 6: 1-10
        • Hikida T.
        • Jaaro-Peled H.
        • Seshadri S.
        • Oishi K.
        • Hookway C.
        • Kong S.
        • et al.
        Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans.
        Proc Natl Acad Sci U S A. 2007; 104: 14501-14506
        • Niwa M.
        • Kamiya A.
        • Murai R.
        • Kubo K.
        • Gruber A.J.
        • Tomita K.
        • et al.
        Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits.
        Neuron. 2010; 65: 480-489
        • Powell S.B.
        • Sejnowski T.J.
        • Behrens M.M.
        Behavioral and neurochemical consequences of cortical oxidative stress on parvalbumin-interneuron maturation in rodent models of schizophrenia.
        Neuropharmacology. 2011; 62: 1322-13231
        • Do K.Q.
        • Trabesinger A.H.
        • Kirsten-Krüger M.
        • Lauer C.J.
        • Dydak U.
        • Hell D.
        • et al.
        Schizophrenia: Glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo.
        Eur J Neurosci. 2000; 12: 3721-3728
        • Gysin R.
        • Kraftsik R.
        • Sandell J.
        • Bovet P.
        • Chappuis C.
        • Conus P.
        • et al.
        Impaired glutathione synthesis in schizophrenia: Convergent genetic and functional evidence.
        Proc Natl Acad Sci U S A. 2007; 104: 16621-16626
        • Ballesteros A.
        • Jiang P.
        • Summerfelt A.
        • Du X.
        • Chiappelli J.
        • O’Donnell P.
        • et al.
        No evidence of exogenous origin for the abnormal glutathione redox state in schizophrenia.
        Schizophr Res. 2013; 146: 184-189
        • Cabungcal J.-H.
        • Nicolas D.
        • Kraftsik R.
        • Cuénod M.
        • Do K.Q.
        • Hornung J.-P.
        Glutathione deficit during development induces anomalies in the rat anterior cingulate GABAergic neurons: Relevance to schizophrenia.
        Neurobiol Dis. 2006; 22: 624-637
        • Cabungcal J.
        • Steullet P.
        • Kraftsik R.
        Early-life insults impair parvalbumin interneurons via oxidative stress: Reversal by N-Acetylcysteine.
        Biol Psychiatry. 2013; 73: 574-582
        • Cabungcal J.-H.
        • Steullet P.
        • Morishita H.
        • Kraftsik R.
        • Cuenod M.
        • Hensch T.K.
        • Do K.Q.
        Perineuronal nets protect fast-spiking interneurons against oxidative stress.
        Proc Natl Acad Sci U S A. 2013; 110: 9130-9135
        • Krystal J.
        • Karper L.
        • Seibyl J.
        • Freeman G.
        • Delaney R.
        • Brenner J.
        • et al.
        Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: Psychotomimetic, perceptual, cognitive, and neuroendocrine responses.
        Arch Gen Psychiatry. 1994; 51: 199-214
        • Lahti A.C.
        • Weiler M.A.
        • Michaelidis T.
        • Parwani A.
        • Tamminga C.A.
        Effects of ketamine in normal and schizophrenic volunteers.
        Neuropsychopharmacology. 2001; 25: 455-467
        • Morshedi M.M.
        • Meredith G.E.
        Differential laminar effects of amphetamine on prefrontal parvalbumin interneurons.
        Neuroscience. 2007; 149: 617-624
        • Peleg-Raibstein D.
        • Knuesel I.
        • Feldon J.
        Amphetamine sensitization in rats as an animal model of schizophrenia.
        Behav Brain Res. 2008; 191: 190-201
        • Tse M.
        • Cantor A.
        • Floresco S.
        Repeated amphetamine exposure disrupts dopaminergic modulation of amygdala-prefrontal circuitry and cognitive/emotional functioning.
        J Neurosci. 2011; 31: 11282-11294
        • Behrens M.
        • Ali S.
        • Dao D.
        • Lucero J.
        Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase.
        Science. 2007; 318: 1645-1647
        • Redrobe J.P.
        • Elster L.
        • Frederiksen K.
        • Bundgaard C.
        • de Jong I.E.M.
        • Smith G.P.
        • et al.
        Negative modulation of GABAA α5 receptors by RO4938581 attenuates discrete sub-chronic and early postnatal phencyclidine (PCP)-induced cognitive deficits in rats.
        Psychopharmacology (Berl). 2012; 221: 451-468
        • Thomases D.R.
        • Cass D.K.
        • Tseng K.Y.
        Periadolescent exposure to the NMDA receptor antagonist MK-801 impairs the functional maturation of local GABAergic circuits in the adult prefrontal cortex.
        J Neurosci. 2013; 33: 26-34
        • Behrens M.M.
        • Ali S.S.
        • Dugan L.L.
        Interleukin-6 mediates the increase in NADPH-oxidase in the ketamine model of schizophrenia.
        J Neurosci. 2008; 28: 13957-13966
        • Homayoun H.
        • Moghaddam B.
        NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons.
        J Neurosci. 2007; 27: 11496-11500
        • Wang C.Z.
        • Yang S.F.
        • Xia Y.
        • Johnson K.M.
        Postnatal phencyclidine administration selectively reduces adult cortical parvalbumin-containing interneurons.
        Neuropsychopharmacology. 2008; 33: 2442-2455
        • Olney J.W.
        • Newcomer J.W.
        • Farber N.B.
        NMDA receptor hypofunction model of schizophrenia.
        J Psychiatr Res. 1999; 33: 523-533
        • Asinof S.K.
        • Paine T.A.
        Inhibition of GABA synthesis in the prefrontal cortex increases locomotor activity but does not affect attention in the 5-choice serial reaction time task.
        Neuropharmacology. 2013; 65: 39-47
        • Paine T.A.
        • Slipp L.E.
        • Carlezon W.A.
        Schizophrenia-like attentional deficits following blockade of prefrontal cortex GABAA receptors.
        Neuropsychopharmacology. 2011; 36: 1703-1713
        • Pehrson A.L.
        • Bondi C.O.
        • Totah N.K.B.
        • Moghaddam B.
        The influence of NMDA and GABA(A) receptors and glutamic acid decarboxylase (GAD) activity on attention.
        Psychopharmacology (Berl). 2013; 225: 31-39
        • Robbins T.W.
        The 5-choice serial reaction time task: Behavioural pharmacology and functional neurochemistry.
        Psychopharmacology (Berl). 2002; 163: 362-380
        • Gray N.S.
        • Snowden R.J.
        The relevance of irrelevance to schizophrenia.
        Neurosci Biobehav Rev. 2005; 29: 989-999
        • Kapur S.
        Psychosis as a state of aberrant salience: A framework linking biology, phenomenology, and pharmacology in schizophrenia.
        Am J Psychiatry. 2003; 160: 13-23
        • Weiner I.
        The “two-headed” latent inhibition model of schizophrenia: Modeling positive and negative symptoms and their treatment.
        Psychopharmacology (Berl). 2003; 169: 257-297
        • Joel D.
        • Weiner I.
        • Feldon J.
        Electrolytic lesions of the medial prefrontal cortex in rats disrupt performance on an analog of the Wisconsin Card Sorting Test, but do not disrupt latent inhibition: Implications for animal models of schizophrenia.
        Behav Brain Res. 1997; 85: 187-201
        • Lacroix L.
        • Spinelli S.
        • White W.
        • Feldon J.
        The effects of ibotenic acid lesions of the medial and lateral prefrontal cortex on latent inhibition, prepulse inhibition and amphetamine-induced hyperlocomotion.
        Neuroscience. 2000; 97: 459-468
        • Piantadosi P.T.
        • Floresco S.B.
        Prefrontal cortical GABA transmission modulates discrimination and latent inhibition of conditioned fear: Relevance for schizophrenia.
        Neuropsychopharmacology. 2014; 39: 2473-2484
        • Sawaguchi T.
        • Matsumura M.
        • Kubota K.
        Delayed response deficit in monkeys by locally disturbed prefrontal neuronal activity by bicuculline.
        Behav Brain Res. 1988; 31: 193-198
        • Sawaguchi T.
        • Matsumura M.
        • Kubota K.
        Delayed response deficits produced by local injection of bicuculline into the dorsolateral prefrontal cortex in Japanese macaque monkeys.
        Exp Brain Res. 1989; 75: 457-469
        • Rao S.G.
        • Williams G.V.
        • Goldman-Rakic P.S.
        Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by working memory.
        J Neurosci. 2000; 20: 485-494
        • Enomoto T.
        • Tse M.T.
        • Floresco S.B.
        Reducing prefrontal gamma-aminobutyric acid activity induces cognitive, behavioral, and dopaminergic abnormalities that resemble schizophrenia.
        Biol Psychiatry. 2011; 69: 432-441
        • Floresco S.B.
        • Seamans J.K.
        • Phillips A.G.
        Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay.
        J Neurosci. 1997; 17: 1880-1890
        • Seamans J.K.
        • Floresco S.B.
        • Phillips A.G.
        Functional differences between the prelimbic and anterior cingulate regions of the rat prefrontal cortex.
        Behav Neurosci. 1995; 109: 1063-1073
        • Burton C.Z.
        • Vella L.
        • Harvey P.D.
        • Patterson T.L.
        • Heaton R.K.
        • Twamley E.W.
        Factor structure of the MATRICS Consensus Cognitive Battery (MCCB) in schizophrenia.
        Schizophr Res. 2013; 146: 244-248
        • Nuechterlein K.H.
        • Barch D.M.
        • Gold J.M.
        • Goldberg T.E.
        • Green M.F.
        • Heaton R.K.
        Identification of separable cognitive factors in schizophrenia.
        Schizophr Res. 2004; 72: 29-39
        • Pantelis C.
        • Wood S.J.
        • Proffitt T.M.
        • Testa R.
        • Mahony K.
        • Brewer W.J.
        • et al.
        Attentional set-shifting ability in first-episode and established schizophrenia: Relationship to working memory.
        Schizophr Res. 2009; 112: 104-113
        • Rodríguez-Sánchez J.M.
        • Crespo-Facorro B.
        • González-Blanch C.
        • Perez-Iglesias R.
        • Vázquez-Barquero J.L.
        Cognitive dysfunction in first-episode psychosis: The processing speed hypothesis.
        Br J Psychiatry Suppl. 2007; 51: s107-s110
        • Pantelis C.
        • Barber F.Z.
        • Barnes T.R.E.
        • Nelson H.E.
        • Owen A.M.
        • Robbins T.W.
        Comparison of set-shifting ability in patients with chronic schizophrenia and frontal lobe damage.
        Schizophr Res. 1999; 37: 251-270
        • Floresco S.B.
        • Block A.E.
        • Tse M.T.L.
        Inactivation of the medial prefrontal cortex of the rat impairs strategy set-shifting, but not reversal learning, using a novel, automated procedure.
        Behav Brain Res. 2008; 190: 85-96
        • Floresco S.B.
        • Zhang Y.
        • Enomoto T.
        Neural circuits subserving behavioral flexibility and their relevance to schizophrenia.
        Behav Brain Res. 2009; 204: 396-409
        • Bissonette G.B.
        • Schoenbaum G.
        • Roesch M.R.
        • Powell E.M.
        Interneurons are necessary for coordinated activity during reversal learning in orbitofrontal cortex [published online ahead of print Aug 1].
        Biol Psychiatry. 2014;
        • Li C-SR
        Do schizophrenia patients make more perseverative than non-perseverative errors on the Wisconsin Card Sorting Test? A meta-analytic study.
        Psychiatry Res. 2004; 129: 179-190
        • Hartman M.
        • Steketee M.C.
        • Silva S.
        • Lanning K.
        • Andersson C.
        Wisconsin Card Sorting Test performance in schizophrenia: The role of working memory.
        Schizophr Res. 2003; 63: 201-217
        • Jensen J.
        • Willeit M.
        • Zipursky R.
        • Savina I.
        • Smith A.J.
        • Menon M.
        • et al.
        The formation of abnormal associations in schizophrenia: Neural and behavioral evidence.
        Neuropsychopharmacology. 2008; 33: 473-479
        • Palaniyappan L.
        • Liddle P.F.
        Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular dysfunction.
        J Psychiatry Neurosci. 2012; 37: 17-27
        • Sotres-Bayon F.
        • Quirk G.J.
        Prefrontal control of fear: More than just extinction.
        Curr Opin Neurobiol. 2010; 20: 231-235
        • Piantadosi P.T.
        • Floresco S.B.
        Regulation of discriminative fear conditioning by distinct prefrontal cortical subregions.
        Soc Neurosci Abstr. 2014; : 746
        • Sesack S.R.
        • Grace A.A.
        Cortico-basal ganglia reward network: Microcircuitry.
        Neuropsychopharmacology. 2010; 35: 27-47
        • Lodge D.J.
        The medial prefrontal and orbitofrontal cortices differentially regulate dopamine system function.
        Neuropsychopharmacology. 2011; 36: 1227-1236
        • Murase S.
        • Grenhoff J.
        • Chouvet G.
        • Gonon F.G.
        • Svensson T.H.
        Prefrontal cortex regulates burst firing and transmitter release in rat mesolimbic dopamine neurons studied in vivo.
        Neurosci Lett. 1993; 157: 53-56
        • Ahn K.
        • Gil R.
        • Seibyl J.
        • Sewell R.A.
        • D’Souza D.C.
        Probing GABA receptor function in schizophrenia with iomazenil.
        Neuropsychopharmacology. 2011; 36: 677-683
        • Lewis D.A.
        • Cho R.Y.
        • Carter C.S.
        • Eklund K.
        • Forster S.
        • Kelly M.A.
        • Montrose D.
        Subunit-selective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia.
        Am J Psychiatry. 2008; 165: 1585-1593
        • Buchanan R.W.
        • Keefe R.S.E.
        • Lieberman J.A.
        • Barch D.M.
        • Csernansky J.G.
        • Goff D.C.
        • et al.
        A randomized clinical trial of MK-0777 for the treatment of cognitive impairments in people with schizophrenia.
        Biol Psychiatry. 2011; 69: 442-449
        • Richetto J.
        • Calabrese F.
        • Meyer U.
        • Riva M.A.
        Prenatal versus postnatal maternal factors in the development of infection-induced working memory impairments in mice.
        Brain Behav Immun. 2013; 33: 190-200
        • Zhang Y.
        • Cazakoff B.N.
        • Thai C.A.
        • Howland J.G.
        Prenatal exposure to a viral mimetic alters behavioural flexibility in male, but not female, rats.
        Neuropharmacology. 2012; 62: 1299-1307
        • Zuckerman L.
        • Rehavi M.
        • Nachman R.
        • Weiner I.
        Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: A novel neurodevelopmental model of schizophrenia.
        Neuropsychopharmacology. 2003; 28: 1778-1789
        • Gourevitch R.
        • Rocher C.
        • Pen G L.e.
        • Krebs M.-O.
        • Jay T.M.
        Working memory deficits in adult rats after prenatal disruption of neurogenesis.
        Behav Pharmacol. 2004; 15: 287-292
        • Moore H.
        • Jentsch J.D.
        • Ghajarnia M.
        • Geyer M.A.
        • Grace A.A.
        A neurobehavioral systems analysis of adult rats exposed to methylazoxymethanol acetate on E17: Implications for the neuropathology of schizophrenia.
        Biol Psychiatry. 2006; 60: 253-264
        • Flagstad P.
        • Glenthøj B.Y.
        • Didriksen M.
        Cognitive deficits caused by late gestational disruption of neurogenesis in rats: A preclinical model of schizophrenia.
        Neuropsychopharmacology. 2005; 30: 250-260
        • Brady A.M.
        • Saul R.D.
        • Wiest M.K.
        Selective deficits in spatial working memory in the neonatal ventral hippocampal lesion rat model of schizophrenia.
        Neuropharmacology. 2010; 59: 605-611
        • Brady A.M.
        Neonatal ventral hippocampal lesions disrupt set-shifting ability in adult rats.
        Behav Brain Res. 2009; 205: 294-298
        • Johnson A.W.
        • Jaaro-Peled H.
        • Shahani N.
        • Sedlak T.W.
        • Zoubovsky S.
        • Burruss D.
        • et al.
        Cognitive and motivational deficits together with prefrontal oxidative stress in a mouse model for neuropsychiatric illness.
        Proc Natl Acad Sci U S A. 2013; 110: 12462-12467
        • Cabungcal J.-H.
        • Preissmann D.
        • Delseth C.
        • Cuénod M.
        • Do K.Q.
        • Schenk F.
        Transitory glutathione deficit during brain development induces cognitive impairment in juvenile and adult rats: Relevance to schizophrenia.
        Neurobiol Dis. 2007; 26: 634-645
        • Featherstone R.E.
        • Kapur S.
        • Fletcher P.J.
        The amphetamine-induced sensitized state as a model of schizophrenia.
        Prog Neuropsychopharmacol Biol Psychiatry. 2007; 31: 1556-1571
        • Fletcher P.J.
        • Tenn C.C.
        • Rizos Z.
        • Lovic V.
        • Kapur S.
        Sensitization to amphetamine, but not PCP, impairs attentional set shifting: Reversal by a D1 receptor agonist injected into the medial prefrontal cortex.
        Psychopharmacology (Berl). 2005; 183: 190-200
        • Tenn C.C.
        • Kapur S.
        • Fletcher P.J.
        Sensitization to amphetamine, but not phencyclidine, disrupts prepulse inhibition and latent inhibition.
        Psychopharmacology (Berl). 2005; 180: 366-376
        • Amitai N.
        • Markou A.
        Increased impulsivity and disrupted attention induced by repeated phencyclidine are not attenuated by chronic quetiapine treatment.
        Pharmacol Biochem Behav. 2009; 93: 248-257
        • Enomoto T.
        • Floresco S.B.
        Disruptions in spatial working memory, but not short-term memory, induced by repeated ketamine exposure.
        Prog Neuropsychopharmacol Biol Psychiatry. 2009; 33: 668-675
        • Goetghebeur P.
        • Dias R.
        Comparison of haloperidol, risperidone, sertindole, and modafinil to reverse an attentional set-shifting impairment following subchronic PCP administration in the rat—a back translational study.
        Psychopharmacology (Berl). 2009; 202: 287-293