Advertisement
Archival Report| Volume 79, ISSUE 5, P345-353, March 01, 2016

Inhibiting Lateral Habenula Improves L-DOPA–Induced Dyskinesia

  • Matthieu F. Bastide
    Affiliations
    Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France

    National Centre for Scientific Research, Institut des Maladies Neurodégénératives, Bordeaux, France
    Search for articles by this author
  • Brice de la Crompe
    Affiliations
    Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France

    National Centre for Scientific Research, Institut des Maladies Neurodégénératives, Bordeaux, France
    Search for articles by this author
  • Evelyne Doudnikoff
    Affiliations
    Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France

    National Centre for Scientific Research, Institut des Maladies Neurodégénératives, Bordeaux, France
    Search for articles by this author
  • Pierre-Olivier Fernagut
    Affiliations
    Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France

    National Centre for Scientific Research, Institut des Maladies Neurodégénératives, Bordeaux, France
    Search for articles by this author
  • Christian E. Gross
    Affiliations
    Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France

    National Centre for Scientific Research, Institut des Maladies Neurodégénératives, Bordeaux, France

    Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
    Search for articles by this author
  • Nicolas Mallet
    Affiliations
    Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France

    National Centre for Scientific Research, Institut des Maladies Neurodégénératives, Bordeaux, France
    Search for articles by this author
  • Thomas Boraud
    Affiliations
    Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France

    National Centre for Scientific Research, Institut des Maladies Neurodégénératives, Bordeaux, France
    Search for articles by this author
  • Erwan Bézard
    Correspondence
    Address correspondence to Erwan Bézard, Ph.D., Université de Bordeaux, Institut des Maladies Neurodégénératives, Campus de Carreire, Bât 3B 1er étage, 146 rue Léo Saignat, Bordeaux 33076, France
    Affiliations
    Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France

    National Centre for Scientific Research, Institut des Maladies Neurodégénératives, Bordeaux, France
    Search for articles by this author
Published:September 09, 2014DOI:https://doi.org/10.1016/j.biopsych.2014.08.022

      Abstract

      Background

      A systematic search of brain nuclei putatively involved in L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) in Parkinson’s disease shed light, notably, upon the lateral habenula (LHb), which displayed an overexpression of the ∆FosB, ARC, and Zif268 immediate-early genes only in rats experiencing abnormal involuntary movements (AIMs). We thus hypothesized that LHb might play a role in LID.

      Methods

      ∆FosB immunoreactivity, 2-deoxyglucose uptake, and firing activity of LHb were studied in experimental models of Parkinson’s disease and LID. ΔFosB-expressing LHb neurons were then targeted using the Daun02-inactivation method. A total of 18 monkeys and 55 rats were used.

      Results

      LHb was found to be metabolically modified in dyskinetic monkeys and its neuronal firing frequency significantly increased in ON L-DOPA dyskinetic 6-hydroxydopamine-lesioned rats, suggesting that increased LHb neuronal activity in response to L-DOPA is related to AIM manifestation. Therefore, to mechanistically test if LHb neuronal activity might affect AIM severity, following induction of AIMs, 6-hydroxydopamine rats were injected with Daun02 in the LHb previously transfected with ß-galactosidase under control of the FosB promoter. Three days after Daun02 administration, animals were tested daily with L-DOPA to assess LID and L-DOPA–induced rotations. Inactivation of ∆FosB-expressing neurons significantly reduced AIM severity and also increased rotations. Interestingly, the dopaminergic D1 receptor was overexpressed only on the lesioned side of dyskinetic rats in LHb and co-localized with ΔFosB, suggesting a D1 receptor-mediated mechanism supporting the LHb involvement in AIMs.

      Conclusions

      This study highlights the role of LHb in LID, offering a new target to innovative treatments of LID.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fahn S.
        How do you treat motor complications in Parkinson’s disease: Medicine, surgery, or both?.
        Ann Neurol. 2008; 64: S56-S64
        • Stocchi F.
        • Nordera G.
        • Marsden C.D.
        Strategies for treating patients with advanced Parkinson’s disease with disastrous fluctuations and dyskinesias.
        Clin Neuropharmacol. 1997; 20: 95-115
        • Bezard E.
        • Brotchie J.M.
        • Gross C.E.
        Pathophysiology of levodopa-induced dyskinesia: Potential for new therapies.
        Nat Rev Neurosci. 2001; 2: 577-588
        • Jenner P.
        Molecular mechanisms of L-DOPA-induced dyskinesia.
        Nat Rev Neurosci. 2008; 9: 665-677
        • Cenci M.A.
        • Whishaw I.Q.
        • Schallert T.
        Animal models of neurological deficits: How relevant is the rat?.
        Nat Rev Neurosci. 2002; 3: 574-579
        • Guigoni C.
        • Li Q.
        • Aubert I.
        • Dovero S.
        • Bioulac B.H.
        • Bloch B.
        • et al.
        Involvement of sensorimotor, limbic, and associative basal ganglia domains in L-3,4-dihydroxyphenylalanine-induced dyskinesia.
        J Neurosci. 2005; 25: 2102-2107
        • Feyder M.
        • Bonito-Oliva A.
        • Fisone G.
        L-DOPA-induced dyskinesia and abnormal signaling in striatal medium spiny neurons: Focus on dopamine D1 receptor-mediated transmission.
        Front Behav Neurosci. 2011; 5: 71
        • Okuno H.
        Regulation and function of immediate-early genes in the brain: Beyond neuronal activity markers.
        Neurosci Res. 2011; 69: 175-186
        • Bastide M.F.
        • Dovero S.
        • Charron G.
        • Porras G.
        • Gross C.E.
        • Fernagut P.O.
        • Bézard E.
        Immediate-early gene expression in structures outside the basal ganglia is associated to l-DOPA-induced dyskinesia.
        Neurobiol Dis. 2014; 62: 179-192
        • Sgambato-Faure V.
        • Buggia V.
        • Gilbert F.
        • Levesque D.
        • Benabid A.L.
        • Berger F.
        Coordinated and spatial upregulation of arc in striatonigral neurons correlates with L-dopa-induced behavioral sensitization in dyskinetic rats.
        J Neuropathol Exp Neurol. 2005; 64: 936-947
        • Mitchell I.J.
        • Boyce S.
        • Sambrook M.A.
        • Crossman A.R.
        A 2-deoxyglucose study of the effects of dopamine agonists on the parkinsonian primate brain. Implications for the neural mechanisms that mediate dopamine agonist-induced dyskinesia.
        Brain. 1992; 115: 809-824
        • Mitchell I.J.
        • Clarke C.E.
        • Boyce S.
        • Robertson R.G.
        • Peggs D.
        • Sambrook M.A.
        • Crossman A.R.
        Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.
        Neuroscience. 1989; 32: 213-226
        • Bezard E.
        • Crossman A.R.
        • Gross C.E.
        • Brotchie J.M.
        Structures outside the basal ganglia may compensate for dopamine loss in the pre-symptomatic stages of Parkinson’s disease.
        FASEB J. 2001; 15: 1092-1094
        • Gnanalingham K.K.
        • Milkowski N.A.
        • Smith L.A.
        • Hunter A.J.
        • Jenner P.
        • Marsden C.D.
        Short and long-term changes in cerebral [14C]-2-deoxyglucose uptake in the MPTP-treated marmoset: Relationship to locomotor activity.
        J Neural Transm Gen Sect. 1995; 101: 65-82
        • Porras G.
        • Berthet A.
        • Dehay B.
        • Li Q.
        • Ladepeche L.
        • Normand E.
        • et al.
        PSD-95 expression controls L-DOPA dyskinesia through dopamine D1 receptor trafficking.
        J Clin Invest. 2012; 122: 3977-3989
        • Ahmed M.R.
        • Berthet A.
        • Bychkov E.
        • Porras G.
        • Li Q.
        • Bioulac B.H.
        • et al.
        Lentiviral overexpression of GRK6 alleviates L-dopa-induced dyskinesia in experimental Parkinson’s disease.
        Sci Transl Med. 2010; 2: 28ra28
        • Fanous S.
        • Goldart E.M.
        • Theberge F.R.
        • Bossert J.M.
        • Shaham Y.
        • Hope B.T.
        Role of orbitofrontal cortex neuronal ensembles in the expression of incubation of heroin craving.
        J Neurosci. 2012; 32: 11600-11609
        • Bossert J.M.
        • Stern A.L.
        • Theberge F.R.
        • Cifani C.
        • Koya E.
        • Hope B.T.
        • et al.
        Ventral medial prefrontal cortex neuronal ensembles mediate context-induced relapse to heroin.
        Nat Neurosci. 2011; 14: 420-422
        • Koya E.
        • Golden S.A.
        • Harvey B.K.
        • Guez-Barber D.H.
        • Berkow A.
        • Simmons D.E.
        • et al.
        Targeted disruption of cocaine-activated nucleus accumbens neurons prevents context-specific sensitization.
        Nat Neurosci. 2009; 12: 1069-1073
        • Santone K.S.
        • Oakes S.G.
        • Taylor S.R.
        • Powis G.
        Anthracycline-induced inhibition of a calcium action potential in differentiated murine neuroblastoma cells.
        Cancer Res. 1986; 46: 2659-2664
        • Engeln M.
        • Bastide M.F.
        • Toulmé E.
        • Dehay B.
        • Bourdenx M.
        • Doudnikoff E.
        • et al.
        Selective inactivation of striatal FosB-expressing neurons alleviates L-Dopa–induced dyskinesia.
        Biol Psychiatry. 2016; 79: 354-361
        • Bezard E.
        • Dovero S.
        • Prunier C.
        • Ravenscroft P.
        • Chalon S.
        • Guilloteau D.
        • et al.
        Relationship between the appearance of symptoms and the level of nigrostriatal degeneration in a progressive MPTP-lesioned macaque model of Parkinson’s disease.
        J Neurosci. 2001; 21: 6853-6861
        • Bezard E.
        • Gross C.E.
        • Brotchie J.M.
        Presymptomatic compensation in Parkinson’s disease is not dopamine-mediated.
        Trends Neurosci. 2003; 26: 215-221
        • Bezard E.
        • Ferry S.
        • Mach U.
        • Stark H.
        • Leriche L.
        • Boraud T.
        • et al.
        Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor function.
        Nat Med. 2003; 9: 762-767
        • Bezard E.
        • Imbert C.
        • Deloire X.
        • Bioulac B.
        • Gross C.
        A chronic MPTP model reproducing the slow evolution of Parkinson’s disease: Evolution of motor symptoms in the monkey.
        Brain Res. 1997; 766: 107-112
        • Bezard E.
        • Ravenscroft P.
        • Gross C.E.
        • Crossman A.R.
        • Brotchie J.M.
        Upregulation of striatal preproenkephalin gene expression occurs before the appearance of parkinsonian signs in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine monkeys.
        Neurobiol Dis. 2001; 8: 343-350
        • Boraud T.
        • Bezard E.
        • Bioulac B.
        • Gross C.
        Dopamine agonist-induced dyskinesias are correlated to both firing pattern and frequency alteration of pallidal neurons in the MPTP-treated monkey.
        Brain. 2001; 124: 546-557
        • Pearce R.K.
        • Jackson M.
        • Smith L.
        • Jenner P.
        • Marsden C.D.
        Chronic L-dopa administration induces dyskinesias in the MPTP-treated common marmoset (Callithrix Jacchus).
        Mov Disord. 1995; 10: 731-740
        • Brotchie J.M.
        • Fox S.H.
        Quantitative assessment of dyskinesias in subhuman primates.
        Mov Disord. 1999; 14: 40-47
        • Paxinos G.
        • Watson C.
        The Rat Brain in Stereotaxic Coordinates.
        6th ed. Elsevier, San Diego2007
        • Berthet A.
        • Porras G.
        • Doudnikoff E.
        • Stark H.
        • Cador M.
        • Bezard E.
        • Bloch B.
        Pharmacological analysis demonstrates dramatic alteration of D1 dopamine receptor neuronal distribution in the rat analog of L-DOPA-induced dyskinesia.
        J Neurosci. 2009; 29: 4829-4835
        • Schuster S.
        • Nadjar A.
        • Guo J.T.
        • Li Q.
        • Ittrich C.
        • Hengerer B.
        • Bezard E.
        The 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor lovastatin reduces severity of L-DOPA-induced abnormal involuntary movements in experimental Parkinson’s disease.
        J Neurosci. 2008; 28: 4311-4316
        • Olsson M.
        • Nikkhah G.
        • Bentlage C.
        • Bjorklund A.
        Forelimb akinesia in the rat Parkinson model: Differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test.
        J Neurosci. 1995; 15 (3863–3675)
        • Pioli E.Y.
        • Meissner W.
        • Sohr R.
        • Gross C.E.
        • Bezard E.
        • Bioulac B.H.
        Differential behavioral effects of partial bilateral lesions of ventral tegmental area or substantia nigra pars compacta in rats.
        Neuroscience. 2008; 153: 1213-1224
        • Cenci M.A.
        • Lee C.S.
        • Bjorklund A.
        L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA.
        Eur J Neurosci. 1998; 10: 2694-2706
        • Lundblad M.
        • Andersson M.
        • Winkler C.
        • Kirik D.
        • Wierup N.
        • Cenci M.A.
        Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease.
        Eur J Neurosci. 2002; 15: 120-132
        • Schuster S.
        • Doudnikoff E.
        • Rylander D.
        • Berthet A.
        • Aubert I.
        • Ittrich C.
        • et al.
        Antagonizing L-type Ca2+ channel reduces development of abnormal involuntary movement in the rat model of L-3,4-dihydroxyphenylalanine-induced dyskinesia.
        Biol Psychiatry. 2009; 65: 518-526
        • Meissner W.
        • Ravenscroft P.
        • Reese R.
        • Harnack D.
        • Morgenstern R.
        • Kupsch A.
        • et al.
        Increased slow oscillatory activity in substantia nigra pars reticulata triggers abnormal involuntary movements in the 6-OHDA-lesioned rat in the presence of excessive extracellular striatal dopamine.
        Neurobiol Dis. 2006; 22: 586-598
        • Berthet A.
        • Bezard E.
        • Porras G.
        • Fasano S.
        • Barroso-Chinea P.
        • Dehay B.
        • et al.
        L-DOPA impairs proteasome activity in parkinsonism through D1 dopamine receptor.
        J Neurosci. 2012; 32: 681-691
        • Mallet N.
        • Pogosyan A.
        • Sharott A.
        • Csicsvari J.
        • Bolam J.P.
        • Brown P.
        • Magill P.J.
        Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex.
        J Neurosci. 2008; 28: 4795-4806
        • Mallet N.
        • Pogosyan A.
        • Marton L.F.
        • Bolam J.P.
        • Brown P.
        • Magill P.J.
        Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity.
        J Neurosci. 2008; 28: 14245-14258
        • Mallet N.
        • Micklem B.R.
        • Henny P.
        • Brown M.T.
        • Williams C.
        • Bolam J.P.
        • et al.
        Dichotomous organization of the external globus pallidus.
        Neuron. 2012; 74: 1075-1086
        • Mallet N.
        • Le Moine C.
        • Charpier S.
        • Gonon F.
        Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo.
        J Neurosci. 2005; 25: 3857-3869
        • Pinault D.
        A novel single-cell staining procedure performed in vivo under electrophysiological control: Morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin.
        J Neurosci Methods. 1996; 65: 113-136
        • Magill P.J.
        • Bolam J.P.
        • Bevan M.D.
        Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network.
        Neuroscience. 2001; 106: 313-330
        • Engeln M.
        • Ahmed S.H.
        • Vouillac C.
        • Tison F.
        • Bezard E.
        • Fernagut P.O.
        Reinforcing properties of Pramipexole in normal and parkinsonian rats.
        Neurobiol Dis. 2012; 49C: 79-86
        • West M.J.
        • Kawas C.H.
        • Stewart W.F.
        • Rudow G.L.
        • Troncoso J.C.
        Hippocampal neurons in pre-clinical Alzheimer’s disease.
        Neurobiol Aging. 2004; 25: 1205-1212
        • Miller R.
        Simultaneous Statistical Inference. Springer, New York1981
        • Magill P.J.
        • Pogosyan A.
        • Sharott A.
        • Csicsvari J.
        • Bolam J.P.
        • Brown P.
        Changes in functional connectivity within the rat striatopallidal axis during global brain activation in vivo.
        J Neurosci. 2006; 26: 6318-6329
        • Kaneoke Y.
        • Vitek J.L.
        Burst and oscillation as disparate neuronal properties.
        J Neurosci Methods. 1996; 68: 211-223
      1. Labarre D, Meissner W, Boraud T. (2008): Measure of the regularity of events in stochastic point processes, application to neuron activity analysis. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2008, March 30 – April 4, 2008, Caesars Palace, Las Vegas, Nevada, 489–492.

        • Belujon P.
        • Bezard E.
        • Taupignon A.
        • Bioulac B.
        • Benazzouz A.
        Noradrenergic modulation of subthalamic nucleus activity: Behavioral and electrophysiological evidence in intact and 6-hydroxydopamine-lesioned rats.
        J Neurosci. 2007; 27: 9595-9606
        • Chowdhury R.
        • Guitart-Masip M.
        • Lambert C.
        • Dayan P.
        • Huys Q.
        • Duzel E.
        • Dolan R.J.
        Dopamine restores reward prediction errors in old age.
        Nat Neurosci. 2013; 16: 648-653
        • Andersson M.
        • Hilbertson A.
        • Cenci M.A.
        Striatal fosB expression is causally linked with l-DOPA-induced abnormal involuntary movements and the associated upregulation of striatal prodynorphin mRNA in a rat model of Parkinson’s disease.
        Neurobiol Dis. 1999; 6: 461-474
        • Doucet J.P.
        • Nakabeppu Y.
        • Bedard P.J.
        • Hope B.T.
        • Nestler E.J.
        • Jasmin B.J.
        • et al.
        Chronic alterations in dopaminergic neurotransmission produce a persistent elevation of deltaFosB-like protein(s) in both the rodent and primate striatum.
        Eur J Neurosci. 1996; 8: 365-381
        • Westin J.E.
        • Vercammen L.
        • Strome E.M.
        • Konradi C.
        • Cenci M.A.
        Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of L-DOPA-induced dyskinesia and the role of dopamine D1 receptors.
        Biol Psychiatry. 2007; 62: 800-810
        • Halje P.
        • Tamte M.
        • Richter U.
        • Mohammed M.
        • Cenci M.A.
        • Petersson P.
        Levodopa-induced dyskinesia is strongly associated with resonant cortical oscillations.
        J Neurosci. 2012; 32: 16541-16551
        • Miguelez C.
        • Grandoso L.
        • Ugedo L.
        Locus coeruleus and dorsal raphe neuron activity and response to acute antidepressant administration in a rat model of Parkinson’s disease.
        Int J Neuropsychopharmacol. 2011; 14: 187-200
        • Sokoloff L.
        • Reivich M.
        • Kennedy C.
        • Des Rosiers M.H.
        • Patlak C.S.
        • Pettigrew K.D.
        • et al.
        The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat.
        J Neurochem. 1977; 28: 897-916
        • Sokoloff L.
        Relation between physiological function and energy metabolism in the central nervous system.
        J Neurochem. 1977; 29: 13-26
        • Porrino L.J.
        • Burns R.S.
        • Crane A.M.
        • Palombo E.
        • Kopin I.J.
        • Sokoloff L.
        Local cerebral metabolic effects of L-dopa therapy in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in monkeys.
        Proc Natl Acad Sci U S A. 1987; 84: 5995-5999
        • Feger J.
        • Robledo P.
        The effects of activation or inhibition of the subthalamic nucleus on the metabolic and electrophysiological activities within the pallidal complex and substantia nigra in the rat.
        Eur J Neurosci. 1991; 3: 947-952
        • Meissner W.
        • Guigoni C.
        • Cirilli L.
        • Garret M.
        • Bioulac B.H.
        • Gross C.E.
        • et al.
        Impact of chronic subthalamic high-frequency stimulation on metabolic basal ganglia activity: A 2-deoxyglucose uptake and cytochrome oxidase mRNA study in a macaque model of Parkinson’s disease.
        Eur J Neurosci. 2007; 25: 1492-1500
        • Hong S.
        • Hikosaka O.
        The globus pallidus sends reward-related signals to the lateral habenula.
        Neuron. 2008; 60: 720-729
        • Hong S.
        • Hikosaka O.
        Diverse sources of reward value signals in the basal ganglia nuclei transmitted to the lateral habenula in the monkey.
        Front Hum Neurosci. 2013; 7: 778
        • Haber S.N.
        • Knutson B.
        The reward circuit: Linking primate anatomy and human imaging.
        Neuropsychopharmacology. 2010; 35: 4-26
        • Stamatakis A.M.
        • Jennings J.H.
        • Ung R.L.
        • Blair G.A.
        • Weinberg R.J.
        • Neve R.L.
        • et al.
        A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward.
        Neuron. 2013; 80: 1039-1053
        • Good C.H.
        • Wang H.
        • Chen Y.H.
        • Mejias-Aponte C.A.
        • Hoffman A.F.
        • Lupica C.R.
        Dopamine D4 receptor excitation of lateral habenula neurons via multiple cellular mechanisms.
        J Neurosci. 2013; 33: 16853-16864
        • Hnasko T.S.
        • Hjelmstad G.O.
        • Fields H.L.
        • Edwards R.H.
        Ventral tegmental area glutamate neurons: Electrophysiological properties and projections.
        J Neurosci. 2012; 32: 15076-15085
        • Boraud T.
        • Bezard E.
        • Guehl D.
        • Bioulac B.
        • Gross C.
        Effects of L-DOPA on neuronal activity of the globus pallidus externalis (GPe) and globus pallidus internalis (GPi) in the MPTP-treated monkey.
        Brain Res. 1998; 787: 157-160
        • Filion M.
        • Tremblay L.
        Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism.
        Brain Res. 1991; 547: 142-151
        • Lozano A.M.
        • Lang A.E.
        • Levy R.
        • Hutchison W.
        • Dostrovsky J.
        Neuronal recordings in Parkinson’s disease patients with dyskinesias induced by apomorphine.
        Ann Neurol. 2000; 47: S141-S146
        • Lozano A.
        • Hutchison W.
        • Kiss Z.
        • Tasker R.
        • Davis K.
        • Dostrovsky J.
        Methods for microelectrode-guided posteroventral pallidotomy.
        J Neurosurg. 1996; 84: 194-202
        • Hutchinson W.D.
        • Lozano A.M.
        • Davis K.D.
        • Saint-Cyr J.A.
        • Lang A.E.
        • Dostrovsky J.O.
        Differential neuronal activity in segments of globus pallidus in Parkinson’s disease patients.
        Neuroreport. 1994; 5: 1533-1537
        • Merello M.
        • Balej J.
        • Delfino M.
        • Cammarota A.
        • Betti O.
        • Leiguarda R.
        Apomorphine induces changes in GPi spontaneous outflow in patients with Parkinson’s disease.
        Mov Disord. 1999; 14: 45-49
        • Bezard E.
        • Boraud T.
        • Chalon S.
        • Brotchie J.M.
        • Guilloteau D.
        • Gross C.E.
        Pallidal border cells: An anatomical and electrophysiological study in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkey.
        Neuroscience. 2001; 103: 117-123
        • Hikosaka O.
        • Sesack S.R.
        • Lecourtier L.
        • Shepard P.D.
        Habenula: Crossroad between the basal ganglia and the limbic system.
        J Neurosci. 2008; 28: 11825-11829
        • Bernard R.
        • Veh R.W.
        Individual neurons in the rat lateral habenular complex project mostly to the dopaminergic ventral tegmental area or to the serotonergic raphe nuclei.
        J Comp Neurol. 2012; 520: 2545-2558
        • Geisler S.
        • Trimble M.
        The lateral habenula: No longer neglected.
        CNS Spectr. 2008; 13: 484-489
        • Klemm W.R.
        Habenular and interpeduncularis nuclei: Shared components in multiple-function networks.
        Med Sci Monit. 2004; 10: RA261-RA273
        • Gill M.J.
        • Ghee S.M.
        • Harper S.M.
        • See R.E.
        Inactivation of the lateral habenula reduces anxiogenic behavior and cocaine seeking under conditions of heightened stress.
        Pharmacol Biochem Behav. 2013; 111: 24-29
        • Zuo W.
        • Chen L.
        • Wang L.
        • Ye J.H.
        Cocaine facilitates glutamatergic transmission and activates lateral habenular neurons.
        Neuropharmacology. 2013; 70: 180-189
        • Matsumoto M.
        • Hikosaka O.
        Lateral habenula as a source of negative reward signals in dopamine neurons.
        Nature. 2007; 447: 1111-1115
        • Friedman A.
        • Lax E.
        • Dikshtein Y.
        • Abraham L.
        • Flaumenhaft Y.
        • Sudai E.
        • et al.
        Electrical stimulation of the lateral habenula produces enduring inhibitory effect on cocaine seeking behavior.
        Neuropharmacology. 2010; 59: 452-459
        • Kowski A.B.
        • Veh R.W.
        • Weiss T.
        Dopaminergic activation excites rat lateral habenular neurons in vivo.
        Neuroscience. 2009; 161: 1154-1165
        • Aubert I.
        • Guigoni C.
        • Hakansson K.
        • Li Q.
        • Dovero S.
        • Barthe N.
        • et al.
        Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia.
        Ann Neurol. 2005; 57: 17-26
        • Wirtshafter D.
        • Krebs J.C.
        Interactive effects of stimulation of D1 and D2 dopamine receptors on Fos expression in the lateral habenula.
        Brain Res. 1997; 750: 245-250
        • Navailles S.
        • Bioulac B.
        • Gross C.
        • De Deurwaerdere P.
        Serotonergic neurons mediate ectopic release of dopamine induced by L-DOPA in a rat model of Parkinson’s disease.
        Neurobiol Dis. 2010; 38: 136-143
        • Carta M.
        • Bezard E.
        Contribution of pre-synaptic mechanisms to L-DOPA-induced dyskinesia.
        Neuroscience. 2011; 198: 245-251
        • Rylander D.
        • Parent M.
        • O’Sullivan S.
        • Dovero S.
        • Lees A.
        • Bezard E.
        • et al.
        Maladaptive plasticity of serotonin axon terminals in levodopa-induced dyskinesia.
        Ann Neurol. 2010; 68: 619-628
        • Engeln M.
        • De Deurwaerdere P.
        • Li Q.
        • Bezard E.
        • Fernagut P.O.
        Widespread monoaminergic dysregulation of both motor and non-motor circuits in parkinsonism and dyskinesia.
        Cereb Cortex. 2014; 25: 2783-2792
        • Carta M.
        • Carlsson T.
        • Kirik D.
        • Bjorklund A.
        Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats.
        Brain. 2007; 130: 1819-1833
        • Carta M.
        • Carlsson T.
        • Munoz A.
        • Kirik D.
        • Bjorklund A.
        Involvement of the serotonin system in L-dopa-induced dyskinesias.
        Parkinsonism Relat Disord. 2008; 14: S154-S158
        • Carta M.
        • Carlsson T.
        • Munoz A.
        • Kirik D.
        • Bjorklund A.
        Serotonin-dopamine interaction in the induction and maintenance of L-DOPA-induced dyskinesias.
        Prog Brain Res. 2008; 172: 465-478
        • Navailles S.
        • Bioulac B.
        • Gross C.
        • De Deurwaerdere P.
        Chronic L-DOPA therapy alters central serotonergic function and L-DOPA-induced dopamine release in a region-dependent manner in a rat model of Parkinson’s disease.
        Neurobiol Dis. 2011; 41: 585-590
        • Rylander D.
        • Iderberg H.
        • Li Q.
        • Dekundy A.
        • Zhang J.
        • Li H.
        • et al.
        A mGluR5 antagonist under clinical development improves L-DOPA-induced dyskinesia in parkinsonian rats and monkeys.
        Neurobiol Dis. 2010; 39: 352-361
        • Bezard E.
        • Tronci E.
        • Pioli E.Y.
        • Li Q.
        • Porras G.
        • Bjorklund A.
        • Carta M.
        Study of the antidyskinetic effect of eltoprazine in animal models of levodopa-induced dyskinesia.
        Mov Disord. 2013; 28: 1088-1096