Advertisement

Syngap1 Haploinsufficiency Damages a Postnatal Critical Period of Pyramidal Cell Structural Maturation Linked to Cortical Circuit Assembly

      Abstract

      Background

      Genetic haploinsufficiency of SYNGAP1/Syngap1 commonly occurs in developmental brain disorders, such as intellectual disability, epilepsy, schizophrenia, and autism spectrum disorder. Thus, studying mouse models of Syngap1 haploinsufficiency may uncover pathologic developmental processes common among distinct brain disorders.

      Methods

      A Syngap1 haploinsufficiency model was used to explore the relationship between critical period dendritic spine abnormalities, cortical circuit assembly, and the window for genetic rescue to understand how damaging mutations disrupt key substrates of mouse brain development.

      Results

      Syngap1 mutations broadly disrupted a developmentally sensitive period that corresponded to the period of heightened postnatal cortical synaptogenesis. Pathogenic Syngap1 mutations caused a coordinated acceleration of dendrite elongation and spine morphogenesis and pruning of these structures in neonatal cortical pyramidal neurons. These mutations also prevented a form of developmental structural plasticity associated with experience-dependent reorganization of brain circuits. Consistent with these findings, Syngap1 mutant mice displayed an altered pattern of long-distance synaptic inputs into a cortical area important for cognition. Interestingly, the ability to genetically improve the behavioral endophenotype of Syngap1 mice decreased slowly over postnatal development and mapped onto the developmental period of coordinated dendritic insults.

      Conclusions

      Pathogenic Syngap1 mutations have a profound impact on the dynamics and structural integrity of pyramidal cell postsynaptic structures known to guide the de novo wiring of nascent cortical circuits. These findings support the idea that disrupted critical periods of dendritic growth and spine plasticity may be a common pathologic process in developmental brain disorders.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Carvill G.L.
        • Heavin S.B.
        • Yendle S.C.
        • McMahon J.M.
        • O׳Roak B.J.
        • Cook J.
        • et al.
        Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1.
        Nat Genet. 2013; 45: 825-830
        • de Ligt J.
        • Willemsen M.H.
        • van Bon B.W.
        • Kleefstra T.
        • Yntema H.G.
        • Kroes T.
        • et al.
        Diagnostic exome sequencing in persons with severe intellectual disability.
        N Engl J Med. 2012; 367: 1921-1929
        • Rauch A.
        • Wieczorek D.
        • Graf E.
        • Wieland T.
        • Endele S.
        • Schwarzmayr T.
        • et al.
        Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: An exome sequencing study.
        Lancet. 2012; 380: 1674-1682
        • Stefansson H.
        • Meyer-Lindenberg A.
        • Steinberg S.
        • Magnusdottir B.
        • Morgen K.
        • Arnarsdottir S.
        • et al.
        CNVs conferring risk of autism or schizophrenia affect cognition in controls.
        Nature. 2014; 505: 361-366
        • Iossifov I.
        • Ronemus M.
        • Levy D.
        • Wang Z.
        • Hakker I.
        • Rosenbaum J.
        • et al.
        De novo gene disruptions in children on the autistic spectrum.
        Neuron. 2012; 74: 285-299
        • Jiang Y.H.
        • Yuen R.K.
        • Jin X.
        • Wang M.
        • Chen N.
        • Wu X.
        • et al.
        Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing.
        Am J Hum Genet. 2013; 93: 249-263
        • Neale B.M.
        • Kou Y.
        • Liu L.
        • Ma׳ayan A.
        • Samocha K.E.
        • Sabo A.
        • et al.
        Patterns and rates of exonic de novo mutations in autism spectrum disorders.
        Nature. 2012; 485: 242-245
        • O׳Roak B.J.
        • Vives L.
        • Girirajan S.
        • Karakoc E.
        • Krumm N.
        • Coe B.P.
        • et al.
        Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations.
        Nature. 2012; 485: 246-250
        • Sanders S.J.
        • Murtha M.T.
        • Gupta A.R.
        • Murdoch J.D.
        • Raubeson M.J.
        • Willsey A.J.
        • et al.
        De novo mutations revealed by whole-exome sequencing are strongly associated with autism.
        Nature. 2012; 485: 237-241
        • Fromer M.
        • Pocklington A.J.
        • Kavanagh D.H.
        • Williams H.J.
        • Dwyer S.
        • Gormley P.
        • et al.
        De novo mutations in schizophrenia implicate synaptic networks.
        Nature. 2014; 506: 179-184
        • Purcell S.M.
        • Moran J.L.
        • Fromer M.
        • Ruderfer D.
        • Solovieff N.
        • Roussos P.
        • et al.
        A polygenic burden of rare disruptive mutations in schizophrenia.
        Nature. 2014; 506: 185-190
        • Zhu X.
        • Need A.C.
        • Petrovski S.
        • Goldstein D.B.
        One gene, many neuropsychiatric disorders: Lessons from Mendelian diseases.
        Nat Neurosci. 2014; 17: 773-781
        • Hoischen A.
        • Krumm N.
        • Eichler E.E.
        Prioritization of neurodevelopmental disease genes by discovery of new mutations.
        Nat Neurosci. 2014; 17: 764-772
        • Hamdan F.F.
        • Gauthier J.
        • Spiegelman D.
        • Noreau A.
        • Yang Y.
        • Pellerin S.
        • et al.
        Mutations in SYNGAP1 in autosomal nonsyndromic mental retardation.
        N Engl J Med. 2009; 360: 599-605
        • Krepischi A.C.
        • Rosenberg C.
        • Costa S.S.
        • Crolla J.A.
        • Huang S.
        • Vianna-Morgante A.M.
        A novel de novo microdeletion spanning the SYNGAP1 gene on the short arm of chromosome 6 associated with mental retardation.
        Am J Med Genet A. 2010; 152A: 2376-2378
        • Pinto D.
        • Pagnamenta A.T.
        • Klei L.
        • Anney R.
        • Merico D.
        • Regan R.
        • et al.
        Functional impact of global rare copy number variation in autism spectrum disorders.
        Nature. 2010; 466: 368-372
        • Hamdan F.F.
        • Daoud H.
        • Piton A.
        • Gauthier J.
        • Dobrzeniecka S.
        • Krebs M.O.
        • et al.
        De novo SYNGAP1 mutations in nonsyndromic intellectual disability and autism.
        Biol Psychiatry. 2011; 69: 898-901
        • Hamdan F.F.
        • Gauthier J.
        • Araki Y.
        • Lin D.T.
        • Yoshizawa Y.
        • Higashi K.
        • et al.
        Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability.
        Am J Hum Genet. 2011; 88: 306-316
        • Berryer M.H.
        • Hamdan F.F.
        • Klitten L.L.
        • Moller R.S.
        • Carmant L.
        • Schwartzentruber J.
        • et al.
        Mutations in SYNGAP1 cause intellectual disability, autism, and a specific form of epilepsy by inducing haploinsufficiency.
        Hum Mutat. 2013; 34: 385-394
        • Writzl K.
        • Knegt A.C.
        6p21.3 microdeletion involving the SYNGAP1 gene in a patient with intellectual disability, seizures, and severe speech impairment.
        Am J Med Genet A. 2013; 161: 1682-1685
        • Penzes P.
        • Cahill M.E.
        • Jones K.A.
        • VanLeeuwen J.E.
        • Woolfrey K.M.
        Dendritic spine pathology in neuropsychiatric disorders.
        Nat Neurosci. 2011; 14: 285-293
        • Verpelli C.
        • Sala C.
        Molecular and synaptic defects in intellectual disability syndromes.
        Curr Opin Neurobiol. 2012; 22: 530-536
        • Chen H.J.
        • Rojas-Soto M.
        • Oguni A.
        • Kennedy M.B.
        A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II.
        Neuron. 1998; 20: 895-904
        • Kim J.H.
        • Liao D.
        • Lau L.F.
        • Huganir R.L.
        SynGAP: A synaptic RasGAP that associates with the PSD-95/SAP90 protein family.
        Neuron. 1998; 20: 683-691
        • Clement J.P.
        • Aceti M.
        • Creson T.K.
        • Ozkan E.D.
        • Shi Y.
        • Reish N.J.
        • et al.
        Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses.
        Cell. 2012; 151: 709-723
        • Ozkan E.D.
        • Creson T.K.
        • Kramar E.A.
        • Rojas C.S.
        • Seese R.R.
        • Babyan A.H.
        • et al.
        Reduced cognition in Syngap1 mutants is caused by isolated damage within developing forebrain excitatory neurons.
        Neuron. 2014; 82: 1317-1333
        • Rumbaugh G.
        • Adams J.P.
        • Kim J.H.
        • Huganir R.L.
        SynGAP regulates synaptic strength and mitogen-activated protein kinases in cultured neurons.
        Proc Natl Acad Sci U S A. 2006; 103: 4344-4351
        • Guo X.
        • Hamilton P.J.
        • Reish N.J.
        • Sweatt J.D.
        • Miller C.A.
        • Rumbaugh G.
        Reduced expression of the NMDA receptor-interacting protein SynGAP causes behavioral abnormalities that model symptoms of schizophrenia.
        Neuropsychopharmacology. 2009; 34: 1659-1672
        • Kim J.H.
        • Lee H.K.
        • Takamiya K.
        • Huganir R.L.
        The role of synaptic GTPase-activating protein in neuronal development and synaptic plasticity.
        J Neurosci. 2003; 23: 1119-1124
        • Cloetta D.
        • Thomanetz V.
        • Baranek C.
        • Lustenberger R.M.
        • Lin S.
        • Oliveri F.
        • et al.
        Inactivation of mTORC1 in the developing brain causes microcephaly and affects gliogenesis.
        J Neurosci. 2013; 33: 7799-7810
        • Laplante M.
        • Sabatini D.M.
        mTOR signaling in growth control and disease.
        Cell. 2012; 149: 274-293
        • Wang C.C.
        • Held R.G.
        • Hall B.J.
        SynGAP regulates protein synthesis and homeostatic synaptic plasticity in developing cortical networks.
        PloS One. 2013; 8: e83941
        • Bhatt D.H.
        • Zhang S.
        • Gan W.B.
        Dendritic spine dynamics.
        Annu Rev Physiol. 2009; 71: 261-282
        • Trachtenberg J.T.
        • Chen B.E.
        • Knott G.W.
        • Feng G.
        • Sanes J.R.
        • Welker E.
        • Svoboda K.
        Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex.
        Nature. 2002; 420: 788-794
        • Zuo Y.
        • Yang G.
        • Kwon E.
        • Gan W.B.
        Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex.
        Nature. 2005; 436: 261-265
        • Clement J.P.
        • Ozkan E.D.
        • Aceti M.
        • Miller C.A.
        • Rumbaugh G.
        SYNGAP1 links the maturation rate of excitatory synapses to the duration of critical-period synaptic plasticity.
        J Neurosci. 2013; 33: 10447-10452
        • Wickersham I.R.
        • Lyon D.C.
        • Barnard R.J.
        • Mori T.
        • Finke S.
        • Conzelmann K.K.
        • et al.
        Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons.
        Neuron. 2007; 53: 639-647
        • Wall N.R.
        • De La Parra M.
        • Callaway E.M.
        • Kreitzer A.C.
        Differential innervation of direct- and indirect-pathway striatal projection neurons.
        Neuron. 2013; 79: 347-360
        • Muhia M.
        • Yee B.K.
        • Feldon J.
        • Markopoulos F.
        • Knuesel I.
        Disruption of hippocampus-regulated behavioural and cognitive processes by heterozygous constitutive deletion of SynGAP.
        Eur J Neurosci. 2010; 31: 529-543
        • Cruz-Martin A.
        • Crespo M.
        • Portera-Cailliau C.
        Delayed stabilization of dendritic spines in fragile X mice.
        J Neurosci. 2010; 30: 7793-7803
        • Pan F.
        • Aldridge G.M.
        • Greenough W.T.
        • Gan W.B.
        Dendritic spine instability and insensitivity to modulation by sensory experience in a mouse model of fragile X syndrome.
        Proc Natl Acad Sci U S A. 2010; 107: 17768-17773
        • Petanjek Z.
        • Judas M.
        • Simic G.
        • Rasin M.R.
        • Uylings H.B.
        • Rakic P.
        • Kostovic I.
        Extraordinary neoteny of synaptic spines in the human prefrontal cortex.
        Proc Natl Acad Sci U S A. 2011; 108: 13281-13286
        • Rakic P.
        • Bourgeois J.P.
        • Eckenhoff M.F.
        • Zecevic N.
        • Goldman-Rakic P.S.
        Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex.
        Science. 1986; 232: 232-235
        • Carlisle H.J.
        • Manzerra P.
        • Marcora E.
        • Kennedy M.B.
        SynGAP regulates steady-state and activity-dependent phosphorylation of cofilin.
        J Neurosci. 2008; 28: 13673-13683