Advertisement

Discovering Schizophrenia Endophenotypes in Randomly Ascertained Pedigrees

      Abstract

      Background

      Although case-control approaches are beginning to disentangle schizophrenia’s complex polygenic burden, other methods will likely be necessary to fully identify and characterize risk genes. Endophenotypes, traits genetically correlated with an illness, can help characterize the impact of risk genes by providing genetically relevant traits that are more tractable than the behavioral symptoms that classify mental illness. Here, we present an analytic approach for discovering and empirically validating endophenotypes in extended pedigrees with very few affected individuals. Our approach indexes each family member’s risk as a function of shared genetic kinship with an affected individual, often referred to as the coefficient of relatedness. To demonstrate the utility of this approach, we search for neurocognitive and neuroanatomic endophenotypes for schizophrenia in large unselected multigenerational pedigrees.

      Methods

      A fixed-effects test within the variance component framework was performed on neurocognitive and cortical surface area traits in 1606 Mexican-American individuals from large, randomly ascertained extended pedigrees who participated in the Genetics of Brain Structure and Function study. As affecteds were excluded from analyses, results were not influenced by disease state or medication usage.

      Results

      Despite having sampled just 6 individuals with schizophrenia, our sample provided 233 individuals at various levels of genetic risk for the disorder. We identified three neurocognitive measures (digit-symbol substitution, facial memory, and emotion recognition) and six medial temporal and prefrontal cortical surfaces associated with liability for schizophrenia.

      Conclusions

      With our novel analytic approach, one can discover and rank endophenotypes for schizophrenia, or any heritable disease, in randomly ascertained pedigrees.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • O’Donovan M.
        • Craddock N.
        • Norton N.
        • Williams H.
        • Peirce T.
        • Moskvina V.
        • et al.
        Identification of loci associated with schizophrenia by genome-wide association and follow-up.
        Nat Genet. 2008; 40: 1053-1055
        • Purcell S.
        • Wray N.
        • Stone J.
        • Visscher P.
        • O’Donovan M.
        • et al.
        • International Schizophrenia Consortium
        Common, polygenic variation contributes to risk of schizophrenia and bipolar disorder.
        Nature. 2009; 460: 748-752
        • Stefansson H.
        • Ophoff R.
        • Steinberg S.
        • Andreassen O.
        • Cichon S.
        • Rujescu D.
        • et al.
        Common variants conferring risk of schizophrenia.
        Nature. 2009; 460: 744-747
        • Shi J.
        • Potash J.
        • Knowles J.
        • Weissman M.
        • Coryell W.
        • Scheftner W.
        • et al.
        Genome-wide association study of recurrent early-onset major depressive disorder.
        Mol Psychiatry. 2011; 16: 193-201
        • Yue W.H.
        • Wang H.F.
        • Sun L.D.
        • Tang F.L.
        • Liu Z.H.
        • Zhang H.X.
        • et al.
        Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2.
        Nat Genet. 2011; 43: 1228-1231
        • Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium
        Genome-wide association study identifies five new schizophrenia loci.
        Nat Genet. 2011; 43: 969-976
        • Rietschel M.
        • Mattheisen M.
        • Degenhardt F.
        • Kahn R.S.
        • Linszen D.H.
        • Os J.V.
        • et al.
        Association between genetic variation in a region on chromosome 11 and schizophrenia in large samples from Europe.
        Mol Psychiatry. 2012; 17: 906-917
        • Ripke S.
        • O’Dushlaine C.
        • Chambert K.
        • Moran J.L.
        • Kähler A.K.
        • Akterin S.
        • et al.
        Genome-wide association analysis identifies 13 new risk loci for schizophrenia.
        Nat Genet. 2013; 45: 1150-1159
        • So H.C.
        • Gui A.H.
        • Cherny S.S.
        • Sham P.C.
        Evaluating the heritability explained by known susceptibility variants: A survey of ten complex diseases.
        Genet Epidemiol. 2011; 35: 310-317
        • Purcell S.M.
        • Moran J.L.
        • Fromer M.
        • Ruderfer D.
        • Solovieff N.
        • Roussos P.
        • et al.
        A polygenic burden of rare disruptive mutations in schizophrenia.
        Nature. 2014; 506: 185-190
        • McClellan J.M.
        • Susser E.
        • King M.C.
        Schizophrenia: A common disease caused by multiple rare alleles.
        Br J Psychiatry. 2007; 190: 194-199
        • Blangero J.
        Localization and identification of human quantitative trait loci: King harvest has surely come.
        Curr Opin Genet Dev. 2004; 14: 233-240
        • Ji W.
        • Foo J.
        • O’Roak B.
        • Zhao H.
        • Larson M.
        • Simon D.
        • et al.
        Rare independent mutations in renal salt handling genes contribute to blood pressure variation.
        Nat Genet. 2008; 40: 592-599
        • Glahn D.C.
        • Knowles E.E.
        • McKay D.R.
        • Sprooten E.
        • Raventos H.
        • Blangero J.
        • et al.
        Arguments for the sake of endophenotypes: Examining common misconceptions about the use of endophenotypes in psychiatric genetics.
        Am J Med Genet B Neuropsychiatr Genet. 2014; 165: 122-130
        • Gottesman II,
        • Gould T.D.
        The endophenotype concept in psychiatry: Etymology and strategic intentions.
        Am J Psychiatry. 2003; 160: 636-645
        • Blangero J.
        • Williams J.T.
        • Almasy L.
        Novel family-based approaches to genetic risk in thrombosis.
        J Thromb Haemost. 2003; 1: 1391-1397
        • Bearden C.
        • Freimer N.
        Endophenotypes for psychiatric disorders: Ready for primetime?.
        Trends Genet. 2006; 22: 306-313
        • Glahn D.C.
        • Curran J.E.
        • Winkler A.M.
        • Carless M.A.
        • Kent Jr, J.W.
        • Charlesworth J.C.
        • et al.
        High dimensional endophenotype ranking in the search for major depression risk genes.
        Biol Psychiatry. 2012; 71: 6-14
        • Glahn D.
        • Blangero J.
        Why endophenotype development requires families.
        Chin Sci Bull. 2011; 56: 3382-3384
        • Fears S.C.
        • Service S.K.
        • Kremeyer B.
        • Araya C.
        • Araya X.
        • Bejarano J.
        • et al.
        Multisystem component phenotypes of bipolar disorder for genetic investigations of extended pedigrees.
        JAMA Psychiatry. 2014; 71: 375-387
        • Glahn D.C.
        • Almasy L.
        • Barguil M.
        • Hare E.
        • Peralta J.M.
        • Kent Jr, J.W.
        • et al.
        Neurocognitive endophenotypes for bipolar disorder identified in multiplex multigenerational families.
        Arch Gen Psychiatry. 2010; 67: 168-177
        • Greenwood T.
        • Braff D.
        • Light G.
        • Cadenhead K.
        • Calkins M.
        • Dobie D.
        • et al.
        Initial heritability analyses of endophenotypic measures for schizophrenia: The consortium on the genetics of schizophrenia.
        Arch Gen Psychiatry. 2007; 64: 1242-1250
        • Glahn D.C.
        • Almasy L.
        • Blangero J.
        • Burk G.M.
        • Estrada J.
        • Peralta J.M.
        • et al.
        Adjudicating neurocognitive endophenotypes for schizophrenia.
        Am J Med Genet B Neuropsychiatr Genet. 2007; 144B: 242-249
        • Almasy L.
        • Blangero J.C.
        Endophenotypes as quantitative risk factors for psychiatric disease: Rationale and study design.
        Am J Med Genet. 2001; 105: 42-44
        • Kessler R.
        • Berglund P.
        • Demler O.
        • Jin R.
        • Koretz D.
        • Merikangas K.
        • et al.
        The epidemiology of major depressive disorder: Results from the National Comorbidity Survey Replication (NCS-R).
        JAMA. 2003; 289: 3095-3105
        • Flint J.
        • Kendler K.S.
        The genetics of major depression.
        Neuron. 2014; 81: 484-503
        • Olvera R.L.
        • Bearden C.E.
        • Velligan D.I.
        • Almasy L.
        • Carless M.A.
        • Curran J.E.
        • et al.
        Common genetic influences on depression, alcohol, and substance use disorders in Mexican-American families.
        Am J Med Genet B Neuropsychiatr Genet. 2011; 156B: 561-568
        • McKay D.R.
        • Knowles E.E.
        • Winkler A.A.
        • Sprooten E.
        • Kochunov P.
        • Olvera R.L.
        • et al.
        Influence of age, sex and genetic factors on the human brain.
        Brain Imaging Behav. 2014; 8: 143-152
        • Sheehan D.V.
        • Lecrubier Y.
        • Sheehan K.H.
        • Amorim P.
        • Janavs J.
        • Weiller E.
        • et al.
        The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10.
        J Clin Psychiatry. 1998; 59 (quiz 34–57): 22-33
        • Glahn D.
        • Almasy L.
        • Blangero J.
        • Burk G.
        • Estrada J.
        • Peralta J.
        • et al.
        Adjudicating neurocognitive endophenotypes for schizophrenia.
        Am J Med Genet B Neuropsychiatr Genet. 2007; 144B: 242-249
        • Glahn D.C.
        • Kent Jr, J.W.
        • Sprooten E.
        • Diego V.P.
        • Winkler A.M.
        • Curran J.E.
        • et al.
        Genetic basis of neurocognitive decline and reduced white-matter integrity in normal human brain aging.
        Proc Natl Acad Sci U S A. 2013; 110: 19006-19011
        • Bachman P.
        • Reichenberg A.
        • Rice P.
        • Woolsey M.
        • Chaves O.
        • Martinez D.
        • et al.
        Deconstructing processing speed deficits in schizophrenia: Application of a parametric digit symbol coding test.
        Schizophr Res. 2010; 118: 6-11
        • Kohler C.
        • Turner T.
        • Bilker W.
        • Brensinger C.
        • Siegel S.
        • Kanes S.
        • et al.
        Facial emotion recognition in schizophrenia: Intensity effects and error pattern.
        Am J Psychiatry. 2003; 160: 1768-1774
        • Gur R.
        • Ragland J.
        • Moberg P.
        • Bilker W.
        • Kohler C.
        • Siegel S.
        • Gur R.E.
        Computerized neurocognitive scanning: II. The profile of schizophrenia.
        Neuropsychopharmacology. 2001; 25: 777-788
        • Kochunov P.
        • Lancaster J.L.
        • Glahn D.C.
        • Purdy D.
        • Laird A.R.
        • Gao F.
        • Fox P.
        Retrospective motion correction protocol for high-resolution anatomical MRI.
        Hum Brain Mapp. 2006; 27: 957-962
        • Dale A.M.
        • Fischl B.
        • Sereno M.I.
        Cortical surface-based analysis. I. Segmentation and surface reconstruction.
        Neuroimage. 1999; 9: 179-194
        • Fischl B.
        • Sereno M.I.
        • Dale A.M.
        Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system.
        Neuroimage. 1999; 9: 195-207
        • Winkler A.
        • Kochunov P.
        • Blangero J.
        • Almasy L.
        • Zilles K.
        • Fox P.
        • et al.
        Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies.
        Neuroimage. 2010; 53: 1135-1146
        • Desikan R.S.
        • Segonne F.
        • Fischl B.
        • Quinn B.T.
        • Dickerson B.C.
        • Blacker D.
        • et al.
        An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.
        Neuroimage. 2006; 31: 968-980
        • Fischl B.
        • van der Kouwe A.
        • Destrieux C.
        • Halgren E.
        • Segonne F.
        • Salat D.H.
        • et al.
        Automatically parcellating the human cerebral cortex.
        Cereb Cortex. 2004; 14: 11-22
        • Dempster E.R.
        • Lerner I.M.
        Heritability of threshold characters.
        Genetics. 1950; 35: 212-236
        • Almasy L.
        • Blangero J.
        Multipoint quantitative-trait linkage analysis in general pedigrees.
        Am J Human Genet. 1998; 62: 1198-1211
        • Almasy L.
        • Gur R.
        • Haack K.
        • Cole S.
        • Calkins M.
        • Peralta J.
        • et al.
        A genome screen for quantitative trait loci influencing schizophrenia and neurocognitive phenotypes.
        Am J Psychiatry. 2008; 165: 1185-1192
        • Cannon T.D.
        • Thompson P.M.
        • van Erp T.G.
        • Toga A.W.
        • Poutanen V.P.
        • Huttunen M.
        • et al.
        Cortex mapping reveals regionally specific patterns of genetic and disease-specific gray-matter deficits in twins discordant for schizophrenia.
        Proc Natl Acad Sci U S A. 2002; 99: 3228-3233
        • Goghari V.M.
        • Rehm K.
        • Carter C.S.
        • MacDonald A.W.
        Regionally specific cortical thinning and gray matter abnormalities in the healthy relatives of schizophrenia patients.
        Cereb Cortex. 2007; 17: 415-424
        • Greenwood T.A.
        • Lazzeroni L.C.
        • Murray S.S.
        • Cadenhead K.S.
        • Calkins M.E.
        • Dobie D.J.
        • et al.
        Analysis of 94 candidate genes and 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia.
        Am J Psychiatry. 2011; 168: 930-946
        • Calkins M.
        • Tepper P.
        • Gur R.
        • Ragland J.
        • Klei L.
        • Wiener H.
        • et al.
        Project among African-Americans to explore risks for schizophrenia (PAARTNERS): Evidence for impairment and heritability of neurocognitive functioning in families of schizophrenia patients.
        Am J Psychiatry. 2010; 167: 459-472
        • Honea R.A.
        • Meyer-Lindenberg A.
        • Hobbs K.B.
        • Pezawas L.
        • Mattay V.S.
        • Egan M.F.
        • et al.
        Is gray matter volume an intermediate phenotype for schizophrenia? A voxel-based morphometry study of patients with schizophrenia and their healthy siblings.
        Biol Psychiatry. 2008; 63: 465-474
        • Kendall M.G.
        • Stuart A.
        • Ord J.K.
        Kendall’s Advanced Theory of Statistics.
        5th ed. Oxford University Press, New York1987
        • Walsh T.
        • McClellan J.M.
        • McCarthy S.E.
        • Addington A.M.
        • Pierce S.B.
        • Cooper G.M.
        • et al.
        Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia.
        Science. 2008; 320: 539-543
        • Talkowski M.E.
        • Kirov G.
        • Bamne M.
        • Georgieva L.
        • Torres G.
        • Mansour H.
        • et al.
        A network of dopaminergic gene variations implicated as risk factors for schizophrenia.
        Hum Mol Genet. 2008; 17: 747-758
        • Snitz B.E.
        • Macdonald A.W.
        • Carter C.S.
        Cognitive deficits in unaffected first-degree relatives of schizophrenia patients: A meta-analytic review of putative endophenotypes.
        Schizophr Bull. 2006; 32: 179-194
        • Greenwood P.
        • Parasuraman R.
        Normal genetic variation, cognition, and aging.
        Behav Cogn Neurosci Rev. 2003; 2: 278-306
        • Mesholam-Gately R.
        • Giuliano A.
        • Goff K.
        • Faraone S.
        • Seidman L.
        Neurocognition in first-episode schizophrenia: A meta-analytic review.
        Neuropsychology. 2009; 23: 315-336
        • Gur R.E.
        • Nimgaonkar V.L.
        • Almasy L.
        • Calkins M.E.
        • Ragland J.D.
        • Pogue-Geile M.F.
        • et al.
        Neurocognitive endophenotypes in a multiplex multigenerational family study of schizophrenia.
        Am J Psychiatry. 2007; 164: 813-819
        • Cannon T.
        • Keller M.
        Endophenotypes in the genetic analyses of mental disorders.
        Annu Rev Clin Psychol. 2006; 2: 267-290
        • Glahn D.
        • Bearden C.
        • Niendam T.
        • Escamilla M.
        The feasibility of neuropsychological endophenotypes in the search for genes associated with bipolar affective disorder.
        Bipolar Disord. 2004; 6: 171-182
        • Gur R.C.
        • Ragland J.D.
        • Moberg P.J.
        • Turner T.H.
        • Bilker W.B.
        • Kohler C.
        • et al.
        Computerized neurocognitive scanning: I. Methodology and validation in healthy people.
        Neuropsychopharmacology. 2001; 25: 766-776
        • Dickinson D.
        • Ramsey M.
        • Gold J.
        Overlooking the obvious: A meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia.
        Arch Gen Psychiatry. 2007; 64: 532-542
        • Knowles E.E.
        • David A.S.
        • Reichenberg A.
        Processing speed deficits in schizophrenia: Reexamining the evidence.
        Am J Psychiatry. 2010; 167: 828-835
        • Greenwood T.A.
        • Swerdlow N.R.
        • Gur R.E.
        • Cadenhead K.S.
        • Calkins M.E.
        • Dobie D.J.
        • et al.
        Genome-wide linkage analyses of 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia.
        Am J Psychiatry. 2013; 170: 521-532
        • Glahn D.
        • Laird A.
        • Ellison-Wright I.
        • Thelen S.
        • Robinson J.
        • Lancaster J.
        • et al.
        Meta-analysis of gray matter anomalies in schizophrenia: Application of anatomic likelihood estimation and network analysis.
        Biol Psychiatry. 2008; 64: 774-781
        • Wright I.C.
        • Rabe-Hesketh S.
        • Woodruff P.W.
        • David A.S.
        • Murray R.M.
        • Bullmore E.T.
        Meta-analysis of regional brain volumes in schizophrenia.
        Am J Psychiatry. 2000; 157: 16-25
        • Harms M.P.
        • Wang L.
        • Campanella C.
        • Aldridge K.
        • Moffitt A.J.
        • Kuelper J.
        • et al.
        Structural abnormalities in gyri of the prefrontal cortex in individuals with schizophrenia and their unaffected siblings.
        Br J Psychiatry. 2010; 196: 150-157
        • Goldman A.L.
        • Pezawas L.
        • Mattay V.S.
        • Fischl B.
        • Verchinski B.A.
        • Zoltick B.
        • et al.
        Heritability of brain morphology related to schizophrenia: A large-scale automated magnetic resonance imaging segmentation study.
        Biol Psychiatry. 2008; 63: 475-483
        • Rimol L.M.
        • Nesvag R.
        • Hagler Jr, D.J.
        • Bergmann O.
        • Fennema-Notestine C.
        • Hartberg C.B.
        • et al.
        Cortical volume, surface area, and thickness in schizophrenia and bipolar disorder.
        Biol Psychiatry. 2012; 71: 552-560
        • Goghari V.M.
        • Macdonald 3rd, A.W.
        • Sponheim S.R.
        Temporal lobe structures and facial emotion recognition in schizophrenia patients and nonpsychotic relatives.
        Schizophr Bull. 2011; 37: 1281-1294
        • McCarthy G.
        • Puce A.
        • Gore J.C.
        • Allison T.
        Face-specific processing in the human fusiform gyrus.
        J Cogn Neurosci. 1997; 9: 605-610