Advertisement

Genetic Risk for Schizophrenia: Convergence on Synaptic Pathways Involved in Plasticity

      Abstract

      Recent large-scale genomic studies have revealed two broad classes of risk alleles for schizophrenia: a polygenic component of risk mediated through multiple common risk variants and rarer more highly penetrant submicroscopic chromosomal deletions and duplications, known as copy number variants. The focus of this review is on the emerging findings from the latter and subsequent exome sequencing data of smaller, deleterious single nucleotide variants and indels. In these studies, schizophrenia patients were found to have enriched de novo mutations in genes belonging to the postsynaptic density at glutamatergic synapses, particularly components of the N-methyl-D-aspartate receptor signaling complex, including the PSD-95 complex, activity-regulated cytoskeleton-associated protein interactors, the fragile X mental retardation protein complex, voltage-gated calcium channels, and genes implicated in actin cytoskeletal dynamics. The convergence of these implicated genes onto a coherent biological pathway at the synapse, with a specific role in plasticity, provides a significant advance in understanding pathogenesis and points to new targets for biological investigation. We consider the implications of these studies in the context of existing genetic data and the potential need to reassess diagnostic boundaries of neuropsychiatric disorders before discussing ways forward for more directed mechanistic studies to develop stratified, novel therapeutic approaches in the future.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bray N.J.
        • Owen M.J.
        Searching for schizophrenia genes.
        Trends Mol Med. 2001; 7: 169-174
        • Gottesman II,
        • Shields J.
        A polygenic theory of schizophrenia.
        Proc Natl Acad Sci U S A. 1967; 58: 199-205
        • Insel T.R.
        Translating scientific opportunity into public health impact: A strategic plan for research on mental illness.
        Arch Gen Psychiatry. 2009; 66: 128-133
        • Doherty J.L.
        • O’Donovan M.C.
        • Owen M.J.
        Recent genomic advances in schizophrenia.
        Clin Genet. 2012; 81: 103-109
        • Kim Y.
        • Zerwas S.
        • Trace S.E.
        • Sullivan P.F.
        Schizophrenia genetics: Where next?.
        Schizophr Bull. 2011; 37: 456-463
        • Mowry B.J.
        • Gratten J.
        The emerging spectrum of allelic variation in schizophrenia: Current evidence and strategies for the identification and functional characterization of common and rare variants.
        Mol Psychiatry. 2013; 18: 38-52
        • Kirov G.
        • Pocklington A.J.
        • Holmans P.
        • Ivanov D.
        • Ikeda M.
        • Ruderfer D.
        • et al.
        De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia.
        Mol Psychiatry. 2012; 17: 142-153
        • Pinto D.
        • Pagnamenta A.T.
        • Klei L.
        • Anney R.
        • Merico D.
        • Regan R.
        • et al.
        Functional impact of global rare copy number variation in autism spectrum disorders.
        Nature. 2010; 466: 368-372
        • Kenny E.M.
        • Cormican P.
        • Furlong S.
        • Heron E.
        • Kenny G.
        • Fahey C.
        • et al.
        Excess of rare novel loss-of-function variants in synaptic genes in schizophrenia and autism spectrum disorders.
        Mol Psychiatry. 2014; 19: 872-879
        • Purcell S.M.
        • Wray N.R.
        • Stone J.L.
        • Visscher P.M.
        • O’Donovan M.C.
        • et al.
        • International Schizophrenia Consortium
        Common polygenic variation contributes to risk of schizophrenia and bipolar disorder.
        Nature. 2009; 460: 748-752
        • Owen M.J.
        • Craddock N.
        • O’Donovan M.C.
        Suggestion of roles for both common and rare risk variants in genome-wide studies of schizophrenia.
        Arch Gen Psychiatry. 2010; 67: 667-673
        • O’Donovan M.C.
        • Craddock N.
        • Norton N.
        • Williams H.
        • Peirce T.
        • Moskvina V.
        • et al.
        Identification of loci associated with schizophrenia by genome-wide association and follow-up.
        Nat Genet. 2008; 40: 1053-1055
        • Shi J.
        • Levinson D.F.
        • Duan J.
        • Sanders A.R.
        • Zheng Y.
        • Pe’er I.
        • et al.
        Common variants on chromosome 6p22.1 are associated with schizophrenia.
        Nature. 2009; 460: 753-757
        • Stefansson H.
        • Ophoff R.A.
        • Steinberg S.
        • Andreassen O.A.
        • Cichon S.
        • Rujescu D.
        • et al.
        Common variants conferring risk of schizophrenia.
        Nature. 2009; 460: 744-747
        • Williams H.J.
        • Craddock N.
        • Russo G.
        • Hamshere M.L.
        • Moskvina V.
        • Dwyer S.
        • et al.
        Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries.
        Hum Mol Genet. 2011; 20: 387-391
        • International Schizophrenia Consortium
        Rare chromosomal deletions and duplications increase risk of schizophrenia.
        Nature. 2008; 455: 237-241
        • Stefansson H.
        • Rujescu D.
        • Cichon S.
        • Pietilainen O.P.
        • Ingason A.
        • Steinberg S.
        • et al.
        Large recurrent microdeletions associated with schizophrenia.
        Nature. 2008; 455: 232-236
        • Kirov G.
        • Grozeva D.
        • Norton N.
        • Ivanov D.
        • Mantripragada K.K.
        • Holmans P.
        • et al.
        Support for the involvement of large copy number variants in the pathogenesis of schizophrenia.
        Hum Mol Genet. 2009; 18: 1497-1503
        • Sebat J.
        • Lakshmi B.
        • Troge J.
        • Alexander J.
        • Young J.
        • Lundin P.
        • et al.
        Large-scale copy number polymorphism in the human genome.
        Science. 2004; 305: 525-528
        • Rees E.
        • Moskvina V.
        • Owen M.J.
        • O’Donovan M.C.
        • Kirov G.
        De novo rates and selection of schizophrenia-associated copy number variants.
        Biol Psychiatry. 2011; 70: 1109-1114
      1. Lee SH, DeCandia TR, Ripke S, Yang J, Schizophrenia Psychiatric Genome-Wide Association Study Consortium, International Schizophrenia Consortium, et al. (2012): Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nat Genet 44:247–250

        • Rees E.
        • Kirov G.
        • O’Donovan M.C.
        • Owen M.J.
        De novo mutation in schizophrenia.
        Schizophr Bull. 2012; 38: 377-381
        • Veltman J.A.
        • Brunner H.G.
        De novo mutations in human genetic disease.
        Nat Rev Genet. 2012; 13: 565-575
        • Neale B.M.
        • Kou Y.
        • Liu L.
        • Ma’ayan A.
        • Samocha K.E.
        • Sabo A.
        • et al.
        Patterns and rates of exonic de novo mutations in autism spectrum disorders.
        Nature. 2012; 485: 242-245
        • O’Roak B.J.
        • Vives L.
        • Girirajan S.
        • Karakoc E.
        • Krumm N.
        • Coe B.P.
        • et al.
        Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations.
        Nature. 2012; 485: 246-250
        • Rauch A.
        • Wieczorek D.
        • Graf E.
        • Wieland T.
        • Endele S.
        • Schwarzmayr T.
        • et al.
        Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: An exome sequencing study.
        Lancet. 2012; 380: 1674-1682
        • Sanders S.J.
        • Murtha M.T.
        • Gupta A.R.
        • Murdoch J.D.
        • Raubeson M.J.
        • Willsey A.J.
        • et al.
        De novo mutations revealed by whole-exome sequencing are strongly associated with autism.
        Nature. 2012; 485: 237-241
        • Girard S.L.
        • Gauthier J.
        • Noreau A.
        • Xiong L.
        • Zhou S.
        • Jouan L.
        • et al.
        Increased exonic de novo mutation rate in individuals with schizophrenia.
        Nat Genet. 2011; 43: 860-863
        • Xu B.
        • Ionita-Laza I.
        • Roos J.L.
        • Boone B.
        • Woodrick S.
        • Sun Y.
        • et al.
        De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia.
        Nat Genet. 2012; 44: 1365-1369
        • Fromer M.
        • Pocklington A.J.
        • Kavanagh D.H.
        • Williams H.J.
        • Dwyer S.
        • Gormley P.
        • et al.
        De novo mutations in schizophrenia implicate synaptic networks.
        Nature. 2014; 506: 179-184
        • Purcell S.M.
        • Moran J.L.
        • Fromer M.
        • Ruderfer D.
        • Solovieff N.
        • Roussos P.
        • et al.
        A polygenic burden of rare disruptive mutations in schizophrenia.
        Nature. 2014; 506: 185-190
        • Walsh T.
        • McClellan J.M.
        • McCarthy S.E.
        • Addington A.M.
        • Pierce S.B.
        • Cooper G.M.
        • et al.
        Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia.
        Science. 2008; 320: 539-543
        • Emes R.D.
        • Pocklington A.J.
        • Anderson C.N.
        • Bayes A.
        • Collins M.O.
        • Vickers C.A.
        • et al.
        Evolutionary expansion and anatomical specialization of synapse proteome complexity.
        Nat Neurosci. 2008; 11: 799-806
        • Bayes A.
        • Grant S.G.
        Neuroproteomics: Understanding the molecular organization and complexity of the brain.
        Nat Rev Neurosci. 2009; 10: 635-646
        • Napoli I.
        • Mercaldo V.
        • Boyl P.P.
        • Eleuteri B.
        • Zalfa F.
        • De Rubeis S.
        • et al.
        The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP.
        Cell. 2008; 134: 1042-1054
        • Fernandez E.
        • Rajan N.
        • Bagni C.
        The FMRP regulon: From targets to disease convergence.
        Front Neurosci. 2013; 7: 191
        • Cingolani L.A.
        • Goda Y.
        Actin in action: The interplay between the actin cytoskeleton and synaptic efficacy.
        Nat Rev Neurosci. 2008; 9: 344-356
        • Casamassima F.
        • Hay A.C.
        • Benedetti A.
        • Lattanzi L.
        • Cassano G.B.
        • Perlis R.H.
        L-type calcium channels and psychiatric disorders: A brief review.
        Am J Med Genet B Neuropsychiatr Genet. 2010; 153B: 1373-1390
        • Schizophrenia Psychiatric Genome-Wide Association Study Consortium
        Genome-wide association study identifies five new schizophrenia loci.
        Nat Genet. 2011; 43: 969-976
        • Bhat S.
        • Dao D.T.
        • Terrillion C.E.
        • Arad M.
        • Smith R.J.
        • Soldatov N.M.
        • Gould T.D.
        CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease.
        Prog Neurobiol. 2012; 99: 1-14
        • Ripke S.
        • O’Dushlaine C.
        • Chambert K.
        • Moran J.L.
        • Kahler A.K.
        • Akterin S.
        • et al.
        Genome-wide association analysis identifies 13 new risk loci for schizophrenia.
        Nat Genet. 2013; 45: 1150-1159
        • Moosmang S.
        • Haider N.
        • Klugbauer N.
        • Adelsberger H.
        • Langwieser N.
        • Muller J.
        • et al.
        Role of hippocampal Cav1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory.
        J Neurosci. 2005; 25: 9883-9892
        • Rao V.R.
        • Finkbeiner S.
        NMDA and AMPA receptors: Old channels, new tricks.
        Trends Neurosci. 2007; 30: 284-291
        • Wang H.
        • Hu Y.
        • Tsien J.Z.
        Molecular and systems mechanisms of memory consolidation and storage.
        Prog Neurobiol. 2006; 79: 123-135
        • Finkbeiner S.
        • Greenberg M.E.
        Ca2+ channel-regulated neuronal gene expression.
        J Neurobiol. 1998; 37: 171-189
        • West A.E.
        • Chen W.G.
        • Dalva M.B.
        • Dolmetsch R.E.
        • Kornhauser J.M.
        • Shaywitz A.J.
        • et al.
        Calcium regulation of neuronal gene expression.
        Proc Natl Acad Sci U S A. 2001; 98: 11024-11031
        • Steward O.
        • Worley P.F.
        Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation.
        Neuron. 2001; 30: 227-240
        • Vanhoutte P.
        • Bading H.
        Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation.
        Curr Opin Neurobiol. 2003; 13: 366-371
        • Steward O.
        • Wallace C.S.
        • Lyford G.L.
        • Worley P.F.
        Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites.
        Neuron. 1998; 21: 741-751
        • Yin Y.
        • Edelman G.M.
        • Vanderklish P.W.
        The brain-derived neurotrophic factor enhances synthesis of Arc in synaptoneurosomes.
        Proc Natl Acad Sci U S A. 2002; 99: 2368-2373
        • Huang F.
        • Chotiner J.K.
        • Steward O.
        Actin polymerization and ERK phosphorylation are required for Arc/Arg3.1 mRNA targeting to activated synaptic sites on dendrites.
        J Neurosci. 2007; 27: 9054-9067
        • Rodriguez J.J.
        • Davies H.A.
        • Silva A.T.
        • De Souza I.E.
        • Peddie C.J.
        • Colyer F.M.
        • et al.
        Long-term potentiation in the rat dentate gyrus is associated with enhanced Arc/Arg3.1 protein expression in spines, dendrites and glia.
        Eur J Neurosci. 2005; 21: 2384-2396
        • Bramham C.R.
        • Alme M.N.
        • Bittins M.
        • Kuipers S.D.
        • Nair R.R.
        • Pai B.
        • et al.
        The Arc of synaptic memory.
        Exp Brain Res. 2010; 200: 125-140
        • Guzowski J.F.
        • Lyford G.L.
        • Stevenson G.D.
        • Houston F.P.
        • McGaugh J.L.
        • Worley P.F.
        • Barnes C.A.
        Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory.
        J Neurosci. 2000; 20: 3993-4001
        • Plath N.
        • Ohana O.
        • Dammermann B.
        • Errington M.L.
        • Schmitz D.
        • Gross C.
        • et al.
        Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories.
        Neuron. 2006; 52: 437-444
        • Messaoudi E.
        • Kanhema T.
        • Soule J.
        • Tiron A.
        • Dagyte G.
        • da Silva B.
        • et al.
        Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo.
        J Neurosci. 2007; 27: 10445-10455
        • Chowdhury S.
        • Shepherd J.D.
        • Okuno H.
        • Lyford G.
        • Petralia R.S.
        • Plath N.
        • et al.
        Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking.
        Neuron. 2006; 52: 445-459
        • Huganir R.L.
        • Nicoll R.A.
        AMPARs and synaptic plasticity: The last 25 years.
        Neuron. 2013; 80: 704-717
        • Peebles C.L.
        • Yoo J.
        • Thwin M.T.
        • Palop J.J.
        • Noebels J.L.
        • Finkbeiner S.
        Arc regulates spine morphology and maintains network stability in vivo.
        Proc Natl Acad Sci U S A. 2010; 107: 18173-18178
        • Rial Verde E.M.
        • Lee-Osbourne J.
        • Worley P.F.
        • Malinow R.
        • Cline H.T.
        Increased expression of the immediate-early gene arc/arg3.1 reduces AMPA receptor-mediated synaptic transmission.
        Neuron. 2006; 52: 461-474
        • Kim Y.
        • Sung J.Y.
        • Ceglia I.
        • Lee K.W.
        • Ahn J.H.
        • Halford J.M.
        • et al.
        Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology.
        Nature. 2006; 442: 814-817
        • Shepherd J.D.
        • Rumbaugh G.
        • Wu J.
        • Chowdhury S.
        • Plath N.
        • Kuhl D.
        • et al.
        Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors.
        Neuron. 2006; 52: 475-484
        • Waung M.W.
        • Pfeiffer B.E.
        • Nosyreva E.D.
        • Ronesi J.A.
        • Huber K.M.
        Rapid translation of Arc/Arg3.1 selectively mediates mGluR-dependent LTD through persistent increases in AMPAR endocytosis rate.
        Neuron. 2008; 59: 84-97
        • Korb E.
        • Wilkinson C.L.
        • Delgado R.N.
        • Lovero K.L.
        • Finkbeiner S.
        Arc in the nucleus regulates PML-dependent GluA1 transcription and homeostatic plasticity.
        Nat Neurosci. 2013; 16: 874-883
        • Routtenberg A.
        Lifetime memories from persistently supple synapses.
        Hippocampus. 2013; 23: 202-206
        • Catterall W.A.
        • Few A.P.
        Calcium channel regulation and presynaptic plasticity.
        Neuron. 2008; 59: 882-901
        • Sudhof T.C.
        Neuroligins and neurexins link synaptic function to cognitive disease.
        Nature. 2008; 455: 903-911
        • Sullivan P.F.
        • Daly M.J.
        • O’Donovan M.
        Genetic architectures of psychiatric disorders: The emerging picture and its implications.
        Nat Rev Genet. 2012; 13: 537-551
        • de Ligt J.
        • Willemsen M.H.
        • van Bon B.W.
        • Kleefstra T.
        • Yntema H.G.
        • Kroes T.
        • et al.
        Diagnostic exome sequencing in persons with severe intellectual disability.
        N Engl J Med. 2012; 367: 1921-1929
        • Malhotra D.
        • Sebat J.
        CNVs: Harbingers of a rare variant revolution in psychiatric genetics.
        Cell. 2012; 148: 1223-1241
        • Craddock N.
        • Owen M.J.
        The Kraepelinian dichotomy – going, going... but still not gone.
        Br J Psychiatry. 2010; 196: 92-95
        • Owen M.J.
        Implications of genetic findings for understanding schizophrenia.
        Schizophr Bull. 2012; 38: 904-907
        • Ho V.M.
        • Lee J.A.
        • Martin K.C.
        The cell biology of synaptic plasticity.
        Science. 2011; 334: 623-628
        • Nathan P.J.
        • Cobb S.R.
        • Lu B.
        • Bullmore E.T.
        • Davies C.H.
        Studying synaptic plasticity in the human brain and opportunities for drug discovery.
        Curr Opin Pharmacol. 2011; 11: 540-548
        • Corlett P.R.
        • Honey G.D.
        • Krystal J.H.
        • Fletcher P.C.
        Glutamatergic model psychoses: Prediction error, learning, and inference.
        Neuropsychopharmacology. 2011; 36: 294-315
        • Glimcher P.W.
        Understanding dopamine and reinforcement learning: The dopamine reward prediction error hypothesis.
        Proc Natl Acad Sci U S A. 2011; 108: 15647-15654
        • Hall J.
        • Romaniuk L.
        • McIntosh A.M.
        • Steele J.D.
        • Johnstone E.C.
        • Lawrie S.M.
        Associative learning and the genetics of schizophrenia.
        Trends Neurosci. 2009; 32: 359-365
        • Schultz W.
        • Dickinson A.
        Neuronal coding of prediction errors.
        Annu Rev Neurosci. 2000; 23: 473-500
        • Howes O.D.
        • Murray R.M.
        Schizophrenia: An integrated sociodevelopmental-cognitive model.
        Lancet. 2014; 383: 1677-1687
        • Lisman J.E.
        • Coyle J.T.
        • Green R.W.
        • Javitt D.C.
        • Benes F.M.
        • Heckers S.
        • Grace A.A.
        Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia.
        Trends Neurosci. 2008; 31: 234-242
        • Lewis D.A.
        Cortical circuit dysfunction and cognitive deficits in schizophrenia--implications for preemptive interventions.
        Eur J Neurosci. 2012; 35: 1871-1878
        • Brown A.S.
        The environment and susceptibility to schizophrenia.
        Prog Neurobiol. 2011; 93: 23-58
        • Gonzalez-Burgos G.
        • Lewis D.A.
        NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia.
        Schizophr Bull. 2012; 38: 950-957
        • Park S.
        • Park J.M.
        • Kim S.
        • Kim J.A.
        • Shepherd J.D.
        • Smith-Hicks C.L.
        • et al.
        Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD.
        Neuron. 2008; 59: 70-83
        • Shepherd J.D.
        • Bear M.F.
        New views of Arc, a master regulator of synaptic plasticity.
        Nat Neurosci. 2011; 14: 279-284