Advertisement

Progressive Reduction in Cortical Thickness as Psychosis Develops: A Multisite Longitudinal Neuroimaging Study of Youth at Elevated Clinical Risk

      Abstract

      Background

      Individuals at clinical high risk (CHR) who progress to fully psychotic symptoms have been observed to show a steeper rate of cortical gray matter reduction compared with individuals without symptomatic progression and with healthy control subjects. Whether such changes reflect processes associated with the pathophysiology of schizophrenia or exposure to antipsychotic drugs is unknown.

      Methods

      In this multisite study, 274 CHR cases, including 35 individuals who converted to psychosis, and 135 healthy comparison subjects were scanned with magnetic resonance imaging at baseline, 12-month follow-up, or the point of conversion for the subjects who developed fully psychotic symptoms.

      Results

      In a traveling subjects substudy, excellent reliability was observed for measures of cortical thickness and subcortical volumes. Controlling for multiple comparisons throughout the brain, CHR subjects who converted to psychosis showed a steeper rate of gray matter loss in the right superior frontal, middle frontal, and medial orbitofrontal cortical regions as well as a greater rate of expansion of the third ventricle compared with CHR subjects who did not convert to psychosis and healthy control subjects. Differential tissue loss was present in subjects who had not received antipsychotic medications during the interscan interval and was predicted by baseline levels of an aggregate measure of proinflammatory cytokines in plasma.

      Conclusions

      These findings demonstrate that the brain changes are not explained by exposure to antipsychotic drugs but likely play a role in psychosis pathophysiology. Given that the cortical changes were more pronounced in subjects with briefer durations of prodromal symptoms, contributing factors may predominantly play a role in acute-onset forms of psychosis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      Reference

        • Pantelis C.
        • Velakoulis D.
        • McGorry P.D.
        • Wood S.J.
        • Suckling J.
        • Phillips L.J.
        • et al.
        Neuroanatomical abnormalities before and after onset of psychosis: A cross-sectional and longitudinal MRI comparison.
        Lancet. 2003; 361: 281-288
        • Sun D.
        • Phillips L.
        • Velakoulis D.
        • Yung A.
        • McGorry P.D.
        • Wood S.J.
        • et al.
        Progressive brain structural changes mapped as psychosis develops in ‘at risk’ individuals.
        Schizophr Res. 2009; 108: 85-92
        • Takahashi T.
        • Wood S.J.
        • Yung A.R.
        • Phillips L.J.
        • Soulsby B.
        • McGorry P.D.
        • et al.
        Insular cortex gray matter changes in individuals at ultra-high-risk of developing psychosis.
        Schizophr Res. 2009; 111: 94-102
        • Ziermans T.B.
        • Schothorst P.F.
        • Schnack H.G.
        • Koolschijn P.C.
        • Kahn R.S.
        • van Engeland H.
        • et al.
        Progressive structural brain changes during development of psychosis.
        Schizophr Bull. 2012; 38: 519-530
        • Borgwardt S.J.
        • McGuire P.K.
        • Aston J.
        • Gschwandtner U.
        • Pfluger M.O.
        • Stieglitz R.D.
        • et al.
        Reductions in frontal, temporal and parietal volume associated with the onset of psychosis.
        Schizophr Res. 2008; 106: 108-114
        • Takahashi T.
        • Wood S.J.
        • Yung A.R.
        • Soulsby B.
        • McGorry P.D.
        • Suzuki M.
        • et al.
        Progressive gray matter reduction of the superior temporal gyrus during transition to psychosis.
        Arch Gen Psychiatry. 2009; 66: 366-376
        • Walter A.
        • Studerus E.
        • Smieskova R.
        • Kuster P.
        • Aston J.
        • Lang U.E.
        • et al.
        Hippocampal volume in subjects at high risk of psychosis: A longitudinal MRI study.
        Schizophr Res. 2012; 142: 217-222
        • Faludi G.
        • Mirnics K.
        Synaptic changes in the brain of subjects with schizophrenia.
        Int J Dev Neurosci. 2011; 29: 305-309
        • Feinberg I.
        Schizophrenia: Caused by a fault in programmed synaptic elimination during adolescence?.
        J Psychiatr Res. 1982; 17: 319-334
        • Glausier J.R.
        • Lewis D.A.
        Dendritic spine pathology in schizophrenia.
        Neuroscience. 2013; 251: 90-107
        • Keshavan M.S.
        • Anderson S.
        • Pettegrew J.W.
        Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited.
        J Psychiatr Res. 28. 1994: 239-265
        • McGlashan T.H.
        • Hoffman R.E.
        Schizophrenia as a disorder of developmentally reduced synaptic connectivity.
        Arch Gen Psychiatry. 2000; 57: 637-648
        • Dorph-Petersen K.A.
        • Pierri J.N.
        • Perel J.M.
        • Sun Z.
        • Sampson A.R.
        • Lewis D.A.
        The influence of chronic exposure to antipsychotic medications on brain size before and after tissue fixation: A comparison of haloperidol and olanzapine in macaque monkeys.
        Neuropsychopharmacology. 2005; 30: 1649-1661
        • Fusar-Poli P.
        • Smieskova R.
        • Kempton M.J.
        • Ho B.C.
        • Andreasen N.C.
        • Borgwardt S.
        Progressive brain changes in schizophrenia related to antipsychotic treatment? A meta-analysis of longitudinal MRI studies.
        Neurosci Biobehav Rev. 2013; 37: 1680-1691
        • Navari S.
        • Dazzan P.
        Do antipsychotic drugs affect brain structure? A systematic and critical review of MRI findings.
        Psychol Med. 2009; 39: 1763-1777
        • Ho B.C.
        • Andreasen N.C.
        • Ziebell S.
        • Pierson R.
        • Magnotta V.
        Long-term antipsychotic treatment and brain volumes: A longitudinal study of first-episode schizophrenia.
        Arch Gen Psychiatry. 2011; 68: 128-137
        • Frick L.R.
        • Williams K.
        • Pittenger C.
        Microglial dysregulation in psychiatric disease.
        Clin Dev Immunol. 2013; 2013: 608654
        • Rao J.S.
        • Kim H.W.
        • Harry G.J.
        • Rapoport S.I.
        • Reese E.A.
        Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in the postmortem frontal cortex from schizophrenia patients.
        Schizophr Res. 2013; 147: 24-31
        • Milatovic D.
        • Gupta R.C.
        • Yu Y.
        • Zaja-Milatovic S.
        • Aschner M.
        Protective effects of antioxidants and anti-inflammatory agents against manganese-induced oxidative damage and neuronal injury.
        Toxicol Appl Pharmacol. 2011; 256: 219-226
        • Meyer U.
        Developmental neuroinflammation and schizophrenia.
        Prog Neuropsychopharmacol Biol Psychiatry. 2013; 42: 20-34
      1. Perkins DO, Jeffries CD, Addington J, Bearden CE, Cardenhead KS, Cannon TD, et al. (in press): Towards a psychosis risk blood diagnostic for persons experiencing high-risk symptoms: Preliminary results from the NAPLS project.

        • Fusar-Poli P.
        • Radua J.
        • McGuire P.
        • Borgwardt S.
        Neuroanatomical maps of psychosis onset: Voxel-wise meta-analysis of antipsychotic-naive VBM studies.
        Schizophr Bull. 2012; 38: 1297-1307
        • De Peri L.
        • Crescini A.
        • Deste G.
        • Fusar-Poli P.
        • Sacchetti E.
        • Vita A.
        Brain structural abnormalities at the onset of schizophrenia and bipolar disorder: A meta-analysis of controlled magnetic resonance imaging studies.
        Curr Pharm Des. 2012; 18: 486-494
        • Addington J.
        • Cadenhead K.S.
        • Cornblatt B.A.
        • Mathalon D.H.
        • McGlashan T.H.
        • Perkins D.O.
        • et al.
        North American Prodrome Longitudinal Study (NAPLS 2): Overview and recruitment.
        Schizophr Res. 2012; 142: 77-82
        • McGlashan T.H.
        • Walsh B.C.
        • Woods S.W.
        The Psychosis-Risk Syndrome: Handbook for Diagnosis and Follow-up.
        Oxford University Press, Oxford2010
        • First M.
        • Spitzer R.L.
        • Gibbon M.
        • Williams B.
        • Williams J.B.W.
        Structured Clinical Interview for DSM-IV Axis I Disorders, Patient Edition.
        Biometrics Research Department, New York State Psychiatric Institute, New York1995
        • Dale A.M.
        • Fischl B.
        • Sereno M.I.
        Cortical surface-based analysis. I. Segmentation and surface reconstruction.
        Neuroimage. 1999; 9: 179-194
        • Fischl B.
        • Dale A.M.
        Measuring the thickness of the human cerebral cortex from magnetic resonance images.
        Proc Natl Acad Sci U S A. 2000; 97: 11050-11055
        • Fischl B.
        • Salat D.H.
        • Busa E.
        • Albert M.
        • Dieterich M.
        • Haselgrove C.
        • et al.
        Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain.
        Neuron. 2002; 33: 341-355
        • Fischl B.
        • Sereno M.I.
        • Dale A.M.
        Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system.
        Neuroimage. 1999; 9: 195-207
        • Fischl B.
        • van der Kouwe A.
        • Destrieux C.
        • Halgren E.
        • Segonne F.
        • Salat D.H.
        • et al.
        Automatically parcellating the human cerebral cortex.
        Cereb Cortex. 2004; 14: 11-22
        • Reuter M.
        • Schmansky N.J.
        • Rosas H.D.
        • Fischl B.
        Within-subject template estimation for unbiased longitudinal image analysis.
        Neuroimage. 2012; 61: 1402-1418
        • Reuter M.
        • Fischl B.
        Avoiding asymmetry-induced bias in longitudinal image processing.
        Neuroimage. 2011; 57: 19-21
        • Reuter M.
        • Rosas H.D.
        • Fischl B.
        Highly accurate inverse consistent registration: A robust approach.
        Neuroimage. 2010; 53: 1181-1196
        • Gunter J.L.
        • Bernstein M.A.
        • Borowski B.J.
        • Ward C.P.
        • Britson P.J.
        • Felmlee J.P.
        • et al.
        Measurement of MRI scanner performance with the ADNI phantom.
        Med Phys. 2009; 36: 2193-2205
        • Cannon T.D.
        • Sun F.
        • McEwen S.J.
        • Papademetris X.
        • He G.
        • van Erp T.G.
        • et al.
        Reliability of neuroanatomical measurements in a multisite longitudinal study of youth at risk for psychosis.
        Hum Brain Mapp. 2014; 35: 2424-2434
        • Milner R.
        • Campbell I.L.
        The extracellular matrix and cytokines regulate microglial integrin expression and activation.
        J Immunol. 2003; 170: 3850-3858
        • Prajeeth C.K.
        • Lohr K.
        • Floess S.
        • Zimmermann J.
        • Ulrich R.
        • Gudi V.
        • et al.
        Effector molecules released by Th1 but not Th17 cells drive an M1 response in microglia.
        Brain Behav Immun. 2014; 37: 248-259
        • Chhor V.
        • Le Charpentier T.
        • Lebon S.
        • Ore M.V.
        • Celador I.L.
        • Josserand J.
        • et al.
        Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro.
        Brain Behav Immun. 2013; 32: 70-85
        • Walker F.R.
        • Beynon S.B.
        • Jones K.A.
        • Zhao Z.
        • Kongsui R.
        • Cairns M.
        • et al.
        Dynamic structural remodelling of microglia in health and disease: A review of the models, the signals and the mechanisms.
        Brain Behav Immun. 2014; 37: 1-14
        • McIntosh A.M.
        • Owens D.C.
        • Moorhead W.J.
        • Whalley H.C.
        • Stanfield A.C.
        • Hall J.
        • et al.
        Longitudinal volume reductions in people at high genetic risk of schizophrenia as they develop psychosis.
        Biol Psychiatry. 2011; 69: 953-958
        • Besedovsky H.O.
        • del Rey A.
        Central and peripheral cytokines mediate immune-brain connectivity.
        Neurochem Res. 2011; 36: 1-6
        • Dazzan P.
        • Soulsby B.
        • Mechelli A.
        • Wood S.J.
        • Velakoulis D.
        • Phillips L.J.
        • et al.
        Volumetric abnormalities predating the onset of schizophrenia and affective psychoses: An MRI study in subjects at ultrahigh risk of psychosis.
        Schizophr Bull. 2012; 38: 1083-1091
        • Fornito A.
        • Yung A.R.
        • Wood S.J.
        • Phillips L.J.
        • Nelson B.
        • Cotton S.
        • et al.
        Anatomic abnormalities of the anterior cingulate cortex before psychosis onset: An MRI study of ultra-high-risk individuals.
        Biol Psychiatry. 2008; 64: 758-765
        • Garner B.
        • Pariante C.M.
        • Wood S.J.
        • Velakoulis D.
        • Phillips L.
        • Soulsby B.
        • et al.
        Pituitary volume predicts future transition to psychosis in individuals at ultra-high risk of developing psychosis.
        Biol Psychiatry. 2005; 58: 417-423
        • Hannan K.L.
        • Wood S.J.
        • Yung A.R.
        • Velakoulis D.
        • Phillips L.J.
        • Soulsby B.
        • et al.
        Caudate nucleus volume in individuals at ultra-high risk of psychosis: A cross-sectional magnetic resonance imaging study.
        Psychiatry Res. 2010; 182: 223-230
        • Iwashiro N.
        • Suga M.
        • Takano Y.
        • Inoue H.
        • Natsubori T.
        • Satomura Y.
        • et al.
        Localized gray matter volume reductions in the pars triangularis of the inferior frontal gyrus in individuals at clinical high-risk for psychosis and first episode for schizophrenia.
        Schizophr Res. 2012; 137: 124-131
        • Jung W.H.
        • Jang J.H.
        • Byun M.S.
        • An S.K.
        • Kwon J.S.
        Structural brain alterations in individuals at ultra-high risk for psychosis: A review of magnetic resonance imaging studies and future directions.
        J Korean Med Sci. 2010; 25: 1700-1709
        • Jung W.H.
        • Kim J.S.
        • Jang J.H.
        • Choi J.S.
        • Jung M.H.
        • Park J.Y.
        • et al.
        Cortical thickness reduction in individuals at ultra-high-risk for psychosis.
        Schizophr Bull. 2011; 37: 839-849
        • Mechelli A.
        • Riecher-Rossler A.
        • Meisenzahl E.M.
        • Tognin S.
        • Wood S.J.
        • Borgwardt S.J.
        • et al.
        Neuroanatomical abnormalities that predate the onset of psychosis: A multicenter study.
        Arch Gen Psychiatry. 2011; 68: 489-495
        • Peters B.D.
        • Dingemans P.M.
        • Dekker N.
        • Blaas J.
        • Akkerman E.
        • van Amelsvoort T.A.
        • et al.
        White matter connectivity and psychosis in ultra-high-risk subjects: A diffusion tensor fiber tracking study.
        Psychiatry Res. 181. 2010: 44-50
        • Phillips L.J.
        • Velakoulis D.
        • Pantelis C.
        • Wood S.
        • Yuen H.P.
        • Yung A.R.
        • et al.
        Non-reduction in hippocampal volume is associated with higher risk of psychosis.
        Schizophr Res. 2002; 58: 145-158
        • Takahashi T.
        • Yucel M.
        • Yung A.R.
        • Wood S.J.
        • Phillips L.J.
        • Berger G.E.
        • et al.
        Adhesio interthalamica in individuals at high-risk for developing psychosis and patients with psychotic disorders.
        Prog Neuropsychopharmacol Biol Psychiatry. 2008; 32: 1708-1714
        • Takahashi T.
        • Yung A.R.
        • Yucel M.
        • Wood S.J.
        • Phillips L.J.
        • Harding I.H.
        • et al.
        Prevalence of large cavum septi pellucidi in ultra high-risk individuals and patients with psychotic disorders.
        Schizophr Res. 2008; 105: 236-244
        • Walterfang M.
        • Yung A.
        • Wood A.G.
        • Reutens D.C.
        • Phillips L.
        • Wood S.J.
        • et al.
        Corpus callosum shape alterations in individuals prior to the onset of psychosis.
        Schizophr Res. 2008; 103: 1-10
        • Witthaus H.
        • Brune M.
        • Kaufmann C.
        • Bohner G.
        • Ozgurdal S.
        • Gudlowski Y.
        • et al.
        White matter abnormalities in subjects at ultra high-risk for schizophrenia and first-episode schizophrenic patients.
        Schizophr Res. 102. 2008: 141-149
        • Witthaus H.
        • Kaufmann C.
        • Bohner G.
        • Ozgurdal S.
        • Gudlowski Y.
        • Gallinat J.
        • et al.
        Gray matter abnormalities in subjects at ultra-high risk for schizophrenia and first-episode schizophrenic patients compared to healthy controls.
        Psychiatry Res. 173. 2009: 163-169
        • Witthaus H.
        • Mendes U.
        • Brune M.
        • Ozgurdal S.
        • Bohner G.
        • Gudlowski Y.
        • et al.
        Hippocampal subdivision and amygdalar volumes in patients in an at-risk mental state for schizophrenia.
        J Psychiatry Neurosci. 2010; 35: 33-40
        • Wood S.J.
        • Kennedy D.
        • Phillips L.J.
        • Seal M.L.
        • Yucel M.
        • Nelson B.
        • et al.
        Hippocampal pathology in individuals at ultra-high risk for psychosis: A multi-modal magnetic resonance study.
        Neuroimage. 2010; 52: 62-68
        • Wood S.J.
        • Yucel M.
        • Velakoulis D.
        • Phillips L.J.
        • Yung A.R.
        • Brewer W.
        • et al.
        Hippocampal and anterior cingulate morphology in subjects at ultra-high-risk for psychosis: The role of family history of psychotic illness.
        Schizophr Res. 2005; 75: 295-301
        • Ziermans T.B.
        • Durston S.
        • Sprong M.
        • Nederveen H.
        • van Haren N.E.
        • Schnack H.G.
        • et al.
        No evidence for structural brain changes in young adolescents at ultra high risk for psychosis.
        Schizophr Res. 2009; 112: 1-6
        • Cannon T.D.
        • Mednick S.A.
        • Parnas J.
        • Schulsinger F.
        • Praestholm J.
        • Vestergaard A.
        Developmental brain abnormalities in the offspring of schizophrenic mothers. I. Contributions of genetic and perinatal factors.
        Arch Gen Psychiatry. 1993; 50: 551-564
        • Cannon T.D.
        • Cadenhead K.
        • Cornblatt B.
        • Woods S.W.
        • Addington J.
        • Walker E.
        • et al.
        Prediction of psychosis in youth at high clinical risk: A multisite longitudinal study in North America.
        Arch Gen Psychiatry. 2008; 65: 28-37
        • Woods S.W.
        Chlorpromazine equivalent doses for the newer atypical antipsychotics.
        J Clin Psychiatry. 2003; 64: 663-667