Lower Glutamic Acid Decarboxylase 65-kDa Isoform Messenger RNA and Protein Levels in the Prefrontal Cortex in Schizoaffective Disorder but Not Schizophrenia



      Altered gamma-aminobutyric acid (GABA) signaling in the prefrontal cortex (PFC) has been associated with cognitive dysfunction in patients with schizophrenia and schizoaffective disorder. Levels of the GABA–synthesizing enzyme glutamic acid decarboxylase 67-kDa isoform (GAD67) in the PFC have been consistently reported to be lower in patients with these disorders, but the status of the second GABA–synthesizing enzyme, glutamic acid decarboxylase 65-kDa isoform (GAD65), remains unclear.


      GAD65 messenger RNA (mRNA) levels were quantified in PFC area 9 by quantitative polymerase chain reaction from 62 subjects with schizophrenia or schizoaffective disorder and 62 matched healthy comparison subjects. In a subset of subject pairs, GAD65 relative protein levels were quantified by confocal immunofluorescence microscopy.


      Mean GAD65 mRNA levels were 13.6% lower in subjects with schizoaffective disorder but did not differ in subjects with schizophrenia relative to their matched healthy comparison subjects. In the subjects with schizoaffective disorder, mean GAD65 protein levels were 19.4% lower and were correlated with GAD65 mRNA levels. Lower GAD65 mRNA and protein levels within subjects with schizoaffective disorder were not attributable to factors commonly comorbid with the diagnosis.


      In concert with previous studies, these findings suggest that schizoaffective disorder is associated with lower levels of both GAD65 and GAD67 mRNA and protein in the PFC, whereas subjects with schizophrenia have lower mean levels of only GAD67 mRNA and protein. Because cognitive function is generally better preserved in patients with schizoaffective disorder relative to patients with schizophrenia, these findings may support an interpretation that GAD65 downregulation provides a homeostatic response complementary to GAD67 downregulation that serves to reduce inhibition in the face of lower PFC network activity.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Gonzalez-Burgos G.
        • Fish K.N.
        • Lewis D.A.
        GABA neuron alterations, cortical circuit dysfunction and cognitive deficits in schizophrenia.
        Neural Plast. 2011; 2011: 723184
        • Erlander M.G.
        • Tillakaratne N.J.
        • Feldblum S.
        • Patel N.
        • Tobin A.J.
        Two genes encode distinct glutamate decarboxylases.
        Neuron. 1991; 7: 91-100
        • Kiser P.J.
        • Cooper N.G.
        • Mower G.D.
        Expression of two forms of glutamic acid decarboxylase (GAD67 and GAD65) during postnatal development of rat somatosensory barrel cortex.
        J Comp Neurol. 1998; 402: 62-74
        • Dupuy S.T.
        • Houser C.R.
        Prominent expression of two forms of glutamate decarboxylase in the embryonic and early postnatal rat hippocampal formation.
        J Neurosci. 1996; 16: 6919-6932
        • Hensch T.K.
        • Fagiolini M.
        • Mataga N.
        • Stryker M.P.
        • Baekkeskov S.
        • Kash S.F.
        Local GABA circuit control of experience-dependent plasticity in developing visual cortex.
        Science. 1998; 282: 1504-1508
        • Hyde T.M.
        • Lipska B.K.
        • Ali T.
        • Mathew S.V.
        • Law A.J.
        • Metitiri O.E.
        • et al.
        Expression of GABA signaling molecules KCC2, NKCC1, and GAD1 in cortical development and schizophrenia.
        J Neurosci. 2011; 31: 11088-11095
        • Guo Y.
        • Kaplan I.V.
        • Cooper N.G.
        • Mower G.D.
        Expression of two forms of glutamic acid decarboxylase (GAD67 and GAD65) during postnatal development of the cat visual cortex.
        Brain Res Dev Brain Res. 1997; 103: 127-141
        • Tian N.
        • Petersen C.
        • Kash S.
        • Baekkeskov S.
        • Copenhagen D.
        • Nicoll R.
        The role of the synthetic enzyme GAD65 in the control of neuronal gamma-aminobutyric acid release.
        Proc Natl Acad Sci U S A. 1999; 96: 12911-12916
        • Wu H.
        • Jin Y.
        • Buddhala C.
        • Osterhaus G.
        • Cohen E.
        • Jin H.
        • et al.
        Role of glutamate decarboxylase (GAD) isoform, GAD65, in GABA synthesis and transport into synaptic vesicles—evidence from GAD65-knockout mice studies.
        Brain Res. 2007; 1154: 80-83
        • Walls A.B.
        • Eyjolfsson E.M.
        • Smeland O.B.
        • Nilsen L.H.
        • Schousboe I.
        • Schousboe A.
        • et al.
        Knockout of GAD65 has major impact on synaptic GABA synthesized from astrocyte-derived glutamine.
        J Cereb Blood Flow Metab. 2011; 31: 494-503
        • Walls A.B.
        • Nilsen L.H.
        • Eyjolfsson E.M.
        • Vestergaard H.T.
        • Hansen S.L.
        • Schousboe A.
        • et al.
        GAD65 is essential for synthesis of GABA destined for tonic inhibition regulating epileptiform activity.
        J Neurochem. 2010; 115: 1398-1408
        • Patel A.B.
        • de Graaf R.A.
        • Martin D.L.
        • Battaglioli G.
        • Behar K.L.
        Evidence that GAD65 mediates increased GABA synthesis during intense neuronal activity in vivo.
        J Neurochem. 2006; 97: 385-396
        • Sheikh S.N.
        • Martin D.L.
        Elevation of brain GABA levels with vigabatrin (gamma-vinylGABA) differentially affects GAD65 and GAD67 expression in various regions of rat brain.
        J Neurosci Res. 1998; 52: 736-741
        • Mason G.F.
        • Martin D.L.
        • Martin S.B.
        • Manor D.
        • Sibson N.R.
        • Patel A.
        • et al.
        Decrease in GABA synthesis rate in rat cortex following GABA-transaminase inhibition correlates with the decrease in GAD(67) protein.
        Brain Res. 2001; 914: 81-91
        • Asada H.
        • Kawamura Y.
        • Maruyama K.
        • Kume H.
        • Ding R.G.
        • Kanbara N.
        • et al.
        Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase.
        Proc Natl Acad Sci U S A. 1997; 94: 6496-6499
        • Asada H.
        • Kawamura Y.
        • Maruyama K.
        • Kume H.
        • Ding R.
        • Ji F.Y.
        • et al.
        Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures.
        Biochem Biophys Res Commun. 1996; 229: 891-895
        • Lau C.G.
        • Murthy V.N.
        Activity-dependent regulation of inhibition via GAD67.
        J Neurosci. 2012; 32: 8521-8531
        • Kash S.F.
        • Johnson R.S.
        • Tecott L.H.
        • Noebels J.L.
        • Mayfield R.D.
        • Hanahan D.
        • et al.
        Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase.
        Proc Natl Acad Sci U S A. 1997; 94: 14060-14065
        • Feldblum S.
        • Erlander M.G.
        • Tobin A.J.
        Different distributions of GAD65 and GAD67 mRNAs suggest that the two glutamate decarboxylases play distinctive functional roles.
        J Neurosci Res. 1993; 34: 689-706
        • Esclapez M.
        • Tillakaratne N.J.
        • Tobin A.J.
        • Houser C.R.
        Comparative localization of mRNAs encoding two forms of glutamic acid decarboxylase with nonradioactive in situ hybridization methods.
        J Comp Neurol. 1993; 331: 339-362
        • Sheikh S.N.
        • Martin S.B.
        • Martin D.L.
        Regional distribution and relative amounts of glutamate decarboxylase isoforms in rat and mouse brain.
        Neurochem Int. 1999; 35: 73-80
        • Fukuda T.
        • Aika Y.
        • Heizmann C.W.
        • Kosaka T.
        GABAergic axon terminals at perisomatic and dendritic inhibitory sites show different immunoreactivities against two GAD isoforms, GAD67 and GAD65, in the mouse hippocampus: A digitized quantitative analysis.
        J Comp Neurol. 1998; 395: 177-194
        • Betley J.N.
        • Wright C.V.
        • Kawaguchi Y.
        • Erdelyi F.
        • Szabo G.
        • Jessell T.M.
        • et al.
        Stringent specificity in the construction of a GABAergic presynaptic inhibitory circuit.
        Cell. 2009; 139: 161-174
        • Sloviter R.S.
        • Dichter M.A.
        • Rachinsky T.L.
        • Dean E.
        • Goodman J.H.
        • Sollas A.L.
        • et al.
        Basal expression and induction of glutamate decarboxylase and GABA in excitatory granule cells of the rat and monkey hippocampal dentate gyrus.
        J Comp Neurol. 1996; 373: 593-618
        • Fish K.N.
        • Sweet R.A.
        • Lewis D.A.
        Differential distribution of proteins regulating GABA synthesis and reuptake in axon boutons of subpopulations of cortical interneurons.
        Cereb Cortex. 2011; 21: 2450-2460
        • Esclapez M.
        • Tillakaratne N.J.
        • Kaufman D.L.
        • Tobin A.J.
        • Houser C.R.
        Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms.
        J Neurosci. 1994; 14: 1834-1855
        • Kaufman D.L.
        • Houser C.R.
        • Tobin A.J.
        Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions.
        J Neurochem. 1991; 56: 720-723
        • Curley A.A.
        • Arion D.
        • Volk D.W.
        • Asafu-Adjei J.K.
        • Sampson A.R.
        • Fish K.N.
        • et al.
        Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: Clinical, protein, and cell type-specific features.
        Am J Psychiatry. 2011; 168: 921-929
        • Gilabert-Juan J.
        • Varea E.
        • Guirado R.
        • Blasco-Ibanez J.M.
        • Crespo C.
        • Nacher J.
        Alterations in the expression of PSA-NCAM and synaptic proteins in the dorsolateral prefrontal cortex of psychiatric disorder patients.
        Neurosci Lett. 2012; 530: 97-102
        • Bharadwaj R.
        • Jiang Y.
        • Mao W.
        • Jakovcevski M.
        • Dincer A.
        • Krueger W.
        • et al.
        Conserved chromosome 2q31 conformations are associated with transcriptional regulation of GAD1 GABA synthesis enzyme and altered in prefrontal cortex of subjects with schizophrenia.
        J Neurosci. 2013; 33: 11839-11851
        • Volk D.W.
        • Matsubara T.
        • Li S.
        • Sengupta E.J.
        • Georgiev D.
        • Minabe Y.
        • et al.
        Deficits in transcriptional regulators of cortical parvalbumin neurons in schizophrenia.
        Am J Psychiatry. 2012; 169: 1082-1091
        • Joshi D.
        • Fung S.J.
        • Rothwell A.
        • Weickert C.S.
        Higher gamma-aminobutyric acid neuron density in the white matter of orbital frontal cortex in schizophrenia.
        Biol Psychiatry. 2012; 72: 725-733
        • Akbarian S.
        • Kim J.J.
        • Potkin S.G.
        • Hagman J.O.
        • Tafazzoli A.
        • Bunney Jr, W.E.
        • et al.
        Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics.
        Arch Gen Psychiatry. 1995; 52: 258-266
        • Volk D.W.
        • Austin M.C.
        • Pierri J.N.
        • Sampson A.R.
        • Lewis D.A.
        Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia.
        Arch Gen Psychiatry. 2000; 57: 237-245
        • Guidotti A.
        • Auta J.
        • Davis J.M.
        • Gerevini V.D.
        • Dwivedi Y.
        • Grayson D.R.
        • et al.
        Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder.
        Arch Gen Psychiatry. 2000; 57: 1061-1069
        • Mirnics K.
        • Middleton F.A.
        • Marquez A.
        • Lewis D.A.
        • Levitt P.
        Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex.
        Neuron. 2000; 28: 53-67
        • Vawter M.P.
        • Crook J.M.
        • Hyde T.M.
        • Kleinman J.E.
        • Weinberger D.R.
        • Becker K.G.
        • et al.
        Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: A preliminary study.
        Schizophr Res. 2002; 58: 11-20
        • Woo T.-U.
        • Walsh J.P.
        • Benes F.M.
        Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-D-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder.
        Arch Gen Psychiatry. 2004; 61: 649-657
        • Hashimoto T.
        • Bazmi H.H.
        • Mirnics K.
        • Wu Q.
        • Sampson A.R.
        • Lewis D.A.
        Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia.
        Am J Psychiatry. 2008; 165: 479-489
        • Straub R.E.
        • Lipska B.K.
        • Egan M.F.
        • Goldberg T.E.
        • Callicott J.H.
        • Mayhew M.B.
        • et al.
        Allelic variation in GAD1 (GAD67) is associated with schizophrenia and influences cortical function and gene expression.
        Mol Psychiatry. 2007; 12: 854-869
        • Huang H.S.
        • Matevossian A.
        • Whittle C.
        • Kim S.Y.
        • Schumacher A.
        • Baker S.P.
        • et al.
        Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters.
        J Neurosci. 2007; 27: 11254-11262
        • Hashimoto T.
        • Bergen S.E.
        • Nguyen Q.L.
        • Xu B.
        • Monteggia L.M.
        • Pierri J.N.
        • et al.
        Relationship of brain-derived neurotrophic factor and its receptor TrkB to altered inhibitory prefrontal circuitry in schizophrenia.
        J Neurosci. 2005; 25: 372-383
        • Woo T.U.
        • Kim A.M.
        • Viscidi E.
        Disease-specific alterations in glutamatergic neurotransmission on inhibitory interneurons in the prefrontal cortex in schizophrenia.
        Brain Res. 2008; 1218: 267-277
        • Hashimoto T.
        • Arion D.
        • Unger T.
        • Maldonado-Aviles J.G.
        • Morris H.M.
        • Volk D.W.
        • et al.
        Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia.
        Mol Psychiatry. 2008; 13: 147-161
        • Thompson M.
        • Weickert C.S.
        • Wyatt E.
        • Webster M.J.
        Decreased glutamic acid decarboxylase(67) mRNA expression in multiple brain areas of patients with schizophrenia and mood disorders.
        J Psychiatr Res. 2009; 43: 970-977
        • Duncan C.E.
        • Webster M.J.
        • Rothmond D.A.
        • Bahn S.
        • Elashoff M.
        • Shannon W.C.
        Prefrontal GABA(A) receptor alpha-subunit expression in normal postnatal human development and schizophrenia.
        J Psychiatry Res. 2010; 44: 673-681
        • Hashimoto T.
        • Volk D.W.
        • Eggan S.M.
        • Mirnics K.
        • Pierri J.N.
        • Sun Z.
        • et al.
        Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia.
        J Neurosci. 2003; 23: 6315-6326
        • Dracheva S.
        • Elhakem S.L.
        • McGurk S.R.
        • Davis K.L.
        • Haroutunian V.
        GAD67 and GAD65 mRNA and protein expression in cerebrocortical regions of elderly patients with schizophrenia.
        J Neurosci Res. 2004; 76: 581-592
        • Stork O.
        • Ji F.Y.
        • Kaneko K.
        • Stork S.
        • Yoshinobu Y.
        • Moriya T.
        • et al.
        Postnatal development of a GABA deficit and disturbance of neural functions in mice lacking GAD65.
        Brain Res. 2000; 865: 45-58
        • Choi S.Y.
        • Morales B.
        • Lee H.K.
        • Kirkwood A.
        Absence of long-term depression in the visual cortex of glutamic acid decarboxylase-65 knock-out mice.
        J Neurosci. 2002; 22: 5271-5276
        • Buddhala C.
        • Hsu C.C.
        • Wu J.Y.
        A novel mechanism for GABA synthesis and packaging into synaptic vesicles.
        Neurochem Int. 2009; 55: 9-12
        • Buddhala C.
        • Suarez M.
        • Modi J.
        • Prentice H.
        • Ma Z.
        • Tao R.
        • et al.
        Calpain cleavage of brain glutamic acid decarboxylase 65 is pathological and impairs GABA neurotransmission.
        PloS One. 2012; 7: e33002
        • Jin H.
        • Wu H.
        • Osterhaus G.
        • Wei J.
        • Davis K.
        • Sha D.
        • et al.
        Demonstration of functional coupling between gamma-aminobutyric acid (GABA) synthesis and vesicular GABA transport into synaptic vesicles.
        Proc Natl Acad Sci U S A. 2003; 100: 4293-4298
        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders, 4th ed.
        American Psychiatric Association, Washington, DC1994
        • Curley A.A.
        • Arion D.
        • Lewis D.A.
        GAD67 and GAD65 protein levels in the dorsolateral prefrontal cortex of subjects with schizophrenia.
        Society for Neuroscience Abstract. 2009; 340 (5/N26)
        • Ridler T.W.
        • Calvard S.
        Picture thresholding using an iterative selection method.
        IEEE Trans System Man and Cybernetics. 1978; SMC-8: 630-632
        • Billinton N.
        • Knight A.W.
        Seeing the wood through the trees: A review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence.
        Anal Biochem. 2001; 291: 175-197
        • Laursen T.M.
        • Munk-Olsen T.
        • Nordentoft M.
        • Bo M.P.
        A comparison of selected risk factors for unipolar depressive disorder, bipolar affective disorder, schizoaffective disorder, and schizophrenia from a danish population-based cohort.
        J Clin Psychiatry. 2007; 68: 1673-1681
        • Goldstein G.
        • Haas G.L.
        • Pakrashi M.
        • Novero A.M.
        • Luther J.F.
        The cycle of schizoaffective disorder, cognitive ability, alcoholism, and suicidality.
        Suicide Life Threat Behav. 2006; 36: 35-43
        • Potkin S.G.
        • Alphs L.
        • Hsu C.
        • Krishnan K.R.
        • Anand R.
        • Young F.K.
        • et al.
        Predicting suicidal risk in schizophrenic and schizoaffective patients in a prospective two-year trial.
        Biol Psychiatry. 2003; 54: 444-452
        • Radomsky E.D.
        • Haas G.L.
        • Mann J.J.
        • Sweeney J.A.
        Suicidal behavior in patients with schizophrenia and other psychotic disorders.
        Am J Psychiatry. 1999; 156: 1590-1595
        • Walsh E.
        • Harvey K.
        • White I.
        • Higgitt A.
        • Fraser J.
        • Murray R.
        Suicidal behaviour in psychosis: Prevalence and predictors from a randomised controlled trial of case management: Report from the UK700 trial.
        Br J Psychiatry. 2001; 178: 255-260
        • Ndetei D.M.
        • Khasakhala L.
        • Meneghini L.
        • Aillon J.L.
        The relationship between schizoaffective, schizophrenic and mood disorders in patients admitted at Mathari Psychiatric Hospital, Nairobi, Kenya.
        Afr J Psychiatry (Johannesbg). 2013; 16: 110-117
        • Murru A.
        • Pacchiarotti I.
        • Nivoli A.M.
        • Grande I.
        • Colom F.
        • Vieta E.
        What we know and what we don’t know about the treatment of schizoaffective disorder.
        Eur Neuropsychopharmacol. 2011; 21: 680-690
        • Magura S.
        • Rosenblum A.
        • Fong C.
        Factors associated with medication adherence among psychiatric outpatients at substance abuse risk.
        Open Addict J. 2011; 4: 58-64
        • Saarni S.I.
        • Viertio S.
        • Perala J.
        • Koskinen S.
        • Lonnqvist J.
        • Suvisaari J.
        Quality of life of people with schizophrenia, bipolar disorder and other psychotic disorders.
        Br J Psychiatry. 2010; 197: 386-394
        • Tukey J.W.
        Exploratory Data Analysis.
        Addison-Wesley Publishing Company, Reading, MA1977
        • Morris H.M.
        • Hashimoto T.
        • Lewis D.A.
        Alterations in somatostatin mRNA expression in the dorsolateral prefrontal cortex of subjects with schizophrenia or schizoaffective disorder.
        Cereb Cortex. 2008; 18: 1575-1587
        • Beneyto M.
        • Abbott A.
        • Hashimoto T.
        • Lewis D.A.
        Lamina-specific alterations in cortical GABAA receptor subunit expression in schizophrenia.
        Cereb Cortex. 2011; 21: 999-1011
      1. Hoftman GD, Volk DW, Bazmi HH, Li S, Sampson AR, Lewis DA (2013): Altered cortical expression of GABA-related genes in schizophrenia: Illness progression vs developmental disturbance [published online ahead of print Dec 22]. Schizophr Bull.

        • Glausier J.R.
        • Lewis D.A.
        Selective pyramidal cell reduction of GABA(A) receptor alpha1 subunit messenger RNA expression in schizophrenia.
        Neuropsychopharmacology. 2011; 36: 2103-2110
        • Eggan S.M.
        • Hashimoto T.
        • Lewis D.A.
        Reduced cortical cannabinoid 1 receptor messenger RNA and protein expression in schizophrenia.
        Arch Gen Psychiatry. 2008; 65: 772-784
        • Eggan S.M.
        • Stoyak S.R.
        • Verrico C.D.
        • Lewis D.A.
        Cannabinoid CB1 receptor immunoreactivity in the prefrontal cortex: Comparison of schizophrenia and major depressive disorder.
        Neuropsychopharmacology. 2010; 35: 2060-2071
        • Bychkov E.R.
        • Ahmed M.R.
        • Gurevich V.V.
        • Benovic J.L.
        • Gurevich E.V.
        Reduced expression of G protein-coupled receptor kinases in schizophrenia but not in schizoaffective disorder.
        Neurobiol Dis. 2011; 44: 248-258
        • Morris H.M.
        • Stopczynski R.E.
        • Lewis D.A.
        NPY mRNA expression in the prefrontal cortex: Selective reduction in the superficial white matter of subjects with schizoaffective disorder.
        Schizophr Res. 2009; 115: 261-269
        • Benes F.M.
        • McSparren J.
        • Bird E.D.
        • SanGiovanni J.P.
        • Vincent S.L.
        Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients.
        Arch Gen Psychiatry. 1991; 48: 996-1001
        • Sibille E.
        • Morris H.M.
        • Kota R.S.
        • Lewis D.A.
        GABA-related transcripts in the dorsolateral prefrontal cortex in mood disorders.
        Int J Neuropsychopharmacol. 2011; 14: 721-734
        • Benes F.M.
        • Todtenkopf M.S.
        • Logiotatos P.
        • Williams M.
        Glutamate decarboxylase(65)-immunoreactive terminals in cingulate and prefrontal cortices of schizophrenic and bipolar brain.
        J Chem Neuroanat. 2000; 20: 259-269
        • Karolewicz B.
        • Maciag D.
        • O’Dwyer G.
        • Stockmeier C.A.
        • Feyissa A.M.
        • Rajkowska G.
        Reduced level of glutamic acid decarboxylase-67 kDa in the prefrontal cortex in major depression.
        Int J Neuropsychopharmacol. 2010; 13: 411-420
        • Hasler G.
        • van der Veen J.W.
        • Tumonis T.
        • Meyers N.
        • Shen J.
        • Drevets W.C.
        Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy.
        Arch Gen Psychiatry. 2007; 64: 193-200
        • Sanacora G.
        • Gueorguieva R.
        • Epperson C.N.
        • Wu Y.T.
        • Appel M.
        • Rothman D.L.
        • et al.
        Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression.
        Arch Gen Psychiatry. 2004; 61: 705-713
        • Cheniaux E.
        • Landeira-Fernandez J.
        • Lessa T.L.
        • Lessa J.L.
        • Dias A.
        • Duncan T.
        • et al.
        Does schizoaffective disorder really exist? A systematic review of the studies that compared schizoaffective disorder with schizophrenia or mood disorders.
        J Affect Disord. 2008; 106: 209-217
        • Reichenberg A.
        • Harvey P.D.
        • Bowie C.R.
        • Mojtabai R.
        • Rabinowitz J.
        • Heaton R.K.
        • et al.
        Neuropsychological function and dysfunction in schizophrenia and psychotic affective disorders.
        Schizophr Bull. 2009; 35: 1022-1029
        • Lewis D.A.
        • Curley A.A.
        • Glausier J.R.
        • Volk D.W.
        Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia.
        Trends Neurosci. 2012; 35: 57-67
        • Kilman V.
        • van Rossum M.C.
        • Turrigiano G.G.
        Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABA(A) receptors clustered at neocortical synapses.
        J Neurosci. 2002; 22: 1328-1337
        • Hartman K.N.
        • Pal S.K.
        • Burrone J.
        • Murthy V.N.
        Activity-dependent regulation of inhibitory synaptic transmission in hippocampal neurons.
        Nat Neurosci. 2006; 9: 642-649
        • Kinney J.W.
        • Davis C.N.
        • Tabarean I.
        • Conti B.
        • Bartfai T.
        • Behrens M.M.
        A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons.
        J Neurosci. 2006; 26: 1604-1615
        • Hendry S.H.C.
        • Jones E.G.
        Activity-dependent regulation of GABA expression in the visual cortex of adult monkeys.
        Neuron. 1988; 1: 701-712