Advertisement

Presynaptic Serotoninergic Regulation of Emotional Processing: A Multimodal Brain Imaging Study

      Abstract

      Background

      The amygdala is a central node in the brain network that processes aversive emotions and is extensively innervated by dorsal raphe nucleus (DRN) serotonin (5-hydroxytryptamine [5-HT]) neurons. Alterations in DRN 5-HT1A receptor availability cause phenotypes characterized by fearful behavior in preclinical models. However, it is unknown whether 5-HT1A receptor availability is linked specifically to the processing of aversive emotions in humans or whether it modulates connectivity in brain networks involved in emotion processing. To answer this question, we investigated the relationship between DRN 5-HT1A receptor availability and amygdala reactivity to aversive emotion and functional connectivity within the amygdala-cortical network.

      Methods

      We studied 15 healthy human participants who underwent positron emission tomography scanning with [11C]CUMI-101, a 5-HT1A partial agonist radioligand, and functional magnetic resonance imaging of brain responses during an incidental emotion processing task including happy, fearful, and neutral faces. Regional estimates of 5-HT1A receptor binding potential (nondisplaceable) were obtained by calculating total volumes of distribution for presynaptic DRN and amygdala. Connectivity between the amygdala and corticolimbic areas was assessed using psychophysiologic interaction analysis with the amygdala as the seed region.

      Results

      Analysis of the fear versus neutral contrast revealed a significant negative correlation between amygdala response and DRN binding potential (nondisplaceable) (r = −.87, p < .001). Availability of DRN 5-HT1A receptors positively correlated with amygdala connectivity with middle frontal gyrus, anterior cingulate cortex, bilateral precuneus, and left supramarginal gyrus for fearful (relative to neutral) faces.

      Conclusions

      Our data show that DRN 5-HT1A receptor availability is linked specifically to the processing of aversive emotions in the amygdala and the modulation of amygdala-cortical connectivity.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dayan P.
        • Huys Q.J.
        Serotonin, inhibition, and negative mood.
        PLoS Comput Biol. 2008; 4: e4
        • Deakin J.F.
        • Graeff F.G.
        5-HT and mechanisms of defence.
        J Psychopharmacol. 1991; 5: 305-315
        • Hoyer D.
        • Hannon J.P.
        • Martin G.R.
        Molecular, pharmacological and functional diversity of 5-HT receptors.
        Pharmacol Biochem Behav. 2002; 71: 533-554
        • Barnes N.M.
        • Sharp T.
        A review of central 5-HT receptors and their function.
        Neuropharmacology. 1999; 38: 1083-1152
        • Ramboz S.
        • Oosting R.
        • Amara D.A.
        • Kung H.F.
        • Blier P.
        • Mendelsohn M.
        • et al.
        Serotonin receptor 1A knockout: An animal model of anxiety-related disorder.
        Proc Natl Acad Sci U S A. 1998; 95: 14476-14481
        • Parks C.L.
        • Robinson P.S.
        • Sibille E.
        • Shenk T.
        • Toth M.
        Increased anxiety of mice lacking the serotonin1A receptor.
        Proc Natl Acad Sci U S A. 1998; 95: 10734-10739
        • Richardson-Jones J.W.
        • Craige C.P.
        • Nguyen T.H.
        • Kung H.F.
        • Gardier A.M.
        • Dranovsky A.
        • et al.
        Serotonin-1A autoreceptors are necessary and sufficient for the normal formation of circuits underlying innate anxiety.
        J Neurosci. 2011; 31: 6008-6018
        • Gross C.
        • Zhuang X.
        • Stark K.
        • Ramboz S.
        • Oosting R.
        • Kirby L.
        • et al.
        Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult.
        Nature. 2002; 416: 396-400
        • Donaldson Z.R.
        • Piel D.A.
        • Santos T.L.
        • Richardson-Jones J.
        • Leonardo E.D.
        • Beck S.G.
        • et al.
        Developmental effects of serotonin 1A autoreceptors on anxiety and social behavior.
        Neuropsychopharmacology. 2014; 39: 291-302
        • Sargent P.A.
        • Kjaer K.H.
        • Bench C.J.
        • Rabiner E.A.
        • Messa C.
        • Meyer J.
        • et al.
        Brain serotonin1A receptor binding measured by positron emission tomography with [11C]WAY-100635: Effects of depression and antidepressant treatment.
        Arch Gen Psychiatry. 2000; 57: 174-180
        • Drevets W.C.
        • Frank E.
        • Price J.C.
        • Kupfer D.J.
        • Holt D.
        • Greer P.J.
        • et al.
        PET imaging of serotonin 1A receptor binding in depression.
        Biol Psychiatry. 1999; 46: 1375-1387
        • Meltzer C.C.
        • Price J.C.
        • Mathis C.A.
        • Butters M.A.
        • Ziolko S.K.
        • Moses-Kolko E.
        • et al.
        Serotonin 1A receptor binding and treatment response in late-life depression.
        Neuropsychopharmacology. 2004; 29: 2258-2265
        • Nash J.R.
        • Sargent P.A.
        • Rabiner E.A.
        • Hood S.D.
        • Argyropoulos S.V.
        • Potokar J.P.
        • et al.
        Serotonin 5-HT1A receptor binding in people with panic disorder: Positron emission tomography study.
        Br J Psychiatry. 2008; 193: 229-234
        • Lanzenberger R.R.
        • Mitterhauser M.
        • Spindelegger C.
        • Wadsak W.
        • Klein N.
        • Mien L.K.
        • et al.
        Reduced serotonin-1A receptor binding in social anxiety disorder.
        Biol Psychiatry. 2007; 61: 1081-1089
        • Parsey R.V.
        • Oquendo M.A.
        • Ogden R.T.
        • Olvet D.M.
        • Simpson N.
        • Huang Y.Y.
        • et al.
        Altered serotonin 1A binding in major depression: A [carbonyl-C-11]WAY100635 positron emission tomography study.
        Biol Psychiatry. 2006; 59: 106-113
        • Hirvonen J.
        • Karlsson H.
        • Kajander J.
        • Lepola A.
        • Markkula J.
        • Rasi-Hakala H.
        • et al.
        Decreased brain serotonin 5-HT1A receptor availability in medication-naive patients with major depressive disorder: An in-vivo imaging study using PET and [carbonyl-11C]WAY-100635.
        Int J Neuropsychopharmacol. 2008; 11: 465-476
        • Phelps E.A.
        • LeDoux J.E.
        Contributions of the amygdala to emotion processing: From animal models to human behavior.
        Neuron. 2005; 48: 175-187
        • Morris J.S.
        • Friston K.J.
        • Buchel C.
        • Frith C.D.
        • Young A.W.
        • Calder A.J.
        • et al.
        A neuromodulatory role for the human amygdala in processing emotional facial expressions.
        Brain. 1998; 121: 47-57
        • Anderson A.K.
        • Phelps E.A.
        Lesions of the human amygdala impair enhanced perception of emotionally salient events.
        Nature. 2001; 411: 305-309
        • Adolphs R.
        • Tranel D.
        • Damasio H.
        • Damasio A.
        Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala.
        Nature. 1994; 372: 669-672
        • Morris J.S.
        • Frith C.D.
        • Perrett D.I.
        • Rowland D.
        • Young A.W.
        • Calder A.J.
        • et al.
        A differential neural response in the human amygdala to fearful and happy facial expressions.
        Nature. 1996; 383: 812-815
        • Fairhall S.L.
        • Ishai A.
        Effective connectivity within the distributed cortical network for face perception.
        Cereb Cortex. 2007; 17: 2400-2406
        • O’Nions E.J.
        • Dolan R.J.
        • Roiser J.P.
        Serotonin transporter genotype modulates subgenual response to fearful faces using an incidental task.
        J Cogn Neurosci. 2011; 23: 3681-3693
        • Ochsner K.N.
        • Gross J.J.
        The cognitive control of emotion.
        Trends Cogn Sci. 2005; 9: 242-249
        • Phillips M.L.
        • Drevets W.C.
        • Rauch S.L.
        • Lane R.
        Neurobiology of emotion perception I: The neural basis of normal emotion perception.
        Biol Psychiatry. 2003; 54: 504-514
        • Davidson R.J.
        Anxiety and affective style: Role of prefrontal cortex and amygdala.
        Biol Psychiatry. 2002; 51: 68-80
        • Urry H.L.
        • van Reekum C.M.
        • Johnstone T.
        • Kalin N.H.
        • Thurow M.E.
        • Schaefer H.S.
        • et al.
        Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults.
        J Neurosci. 2006; 26: 4415-4425
        • Phan K.L.
        • Fitzgerald D.A.
        • Nathan P.J.
        • Moore G.J.
        • Uhde T.W.
        • Tancer M.E.
        Neural substrates for voluntary suppression of negative affect: A functional magnetic resonance imaging study.
        Biol Psychiatry. 2005; 57: 210-219
        • Jacobs B.L.
        • Azmitia E.C.
        Structure and function of the brain serotonin system.
        Physiol Rev. 1992; 72: 165-229
        • Fisher P.M.
        • Meltzer C.C.
        • Ziolko S.K.
        • Price J.C.
        • Moses-Kolko E.L.
        • Berga S.L.
        • et al.
        Capacity for 5-HT1A-mediated autoregulation predicts amygdala reactivity.
        Nat Neurosci. 2006; 9: 1362-1363
        • Weiskopf N.
        • Hutton C.
        • Josephs O.
        • Deichmann R.
        Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: A whole-brain analysis at 3 T and 1.5 T.
        Neuroimage. 2006; 33: 493-504
        • Weiskopf N.
        • Hutton C.
        • Josephs O.
        • Turner R.
        • Deichmann R.
        Optimized EPI for fMRI studies of the orbitofrontal cortex: Compensation of susceptibility-induced gradients in the readout direction.
        MAGMA. 2007; 20: 39-49
        • Kemp B.J.
        • Kim C.
        • Williams J.J.
        • Ganin A.
        • Lowe V.J.
        NEMA NU 2-2001 performance measurements of an LYSO-based PET/CT system in 2D and 3D acquisition modes.
        J Nucl Med. 2006; 47: 1960-1967
        • Selvaraj S.
        • Turkheimer F.
        • Rosso L.
        • Faulkner P.
        • Mouchlianitis E.
        • Roiser J.P.
        • et al.
        Measuring endogenous changes in serotonergic neurotransmission in humans: A [11C]CUMI-101 PET challenge study.
        Mol Psychiatry. 2012; 17: 1254-1260
        • Hammers A.
        • Allom R.
        • Koepp M.J.
        • Free S.L.
        • Myers R.
        • Lemieux L.
        • et al.
        Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe.
        Hum Brain Mapp. 2003; 19: 224-247
        • Logan J.
        • Fowler J.S.
        • Volkow N.D.
        • Wolf A.P.
        • Dewey S.L.
        • Schlyer D.J.
        • et al.
        Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects.
        J Cereb Blood Flow Metab. 1990; 10: 740-747
        • Innis R.B.
        • Cunningham V.J.
        • Delforge J.
        • Fujita M.
        • Gjedde A.
        • Gunn R.N.
        • et al.
        Consensus nomenclature for in vivo imaging of reversibly binding radioligands.
        J Cereb Blood Flow Metab. 2007; 27: 1533-1539
        • Rhodes R.A.
        • Murthy N.V.
        • Dresner M.A.
        • Selvaraj S.
        • Stavrakakis N.
        • Babar S.
        • et al.
        Human 5-HT transporter availability predicts amygdala reactivity in vivo.
        J Neurosci. 2007; 27: 9233-9237
        • Baas D.
        • Aleman A.
        • Kahn R.S.
        Lateralization of amygdala activation: A systematic review of functional neuroimaging studies.
        Brain Res Brain Res Rev. 2004; 45: 96-103
        • Esterman M.
        • Tamber-Rosenau B.J.
        • Chiu Y.C.
        • Yantis S.
        Avoiding non-independence in fMRI data analysis: Leave one subject out.
        Neuroimage. 2010; 50: 572-576
        • Hariri A.R.
        • Drabant E.M.
        • Munoz K.E.
        • Kolachana B.S.
        • Mattay V.S.
        • Egan M.F.
        • et al.
        A susceptibility gene for affective disorders and the response of the human amygdala.
        Arch Gen Psychiatry. 2005; 62: 146-152
        • Maier S.F.
        • Grahn R.E.
        • Watkins L.R.
        8-OH-DPAT microinjected in the region of the dorsal raphe nucleus blocks and reverses the enhancement of fear conditioning and interference with escape produced by exposure to inescapable shock.
        Behav Neurosci. 1995; 109: 404-412
        • File S.E.
        • Gonzalez L.E.
        Anxiolytic effects in the plus-maze of 5-HT1A-receptor ligands in dorsal raphé and ventral hippocampus.
        Pharmacol Biochem Behav. 1996; 54: 123-128
        • Etkin A.
        • Egner T.
        • Kalisch R.
        Emotional processing in anterior cingulate and medial prefrontal cortex.
        Trends Cogn Sci. 2011; 15: 85-93
        • Amting J.M.
        • Greening S.G.
        • Mitchell D.G.
        Multiple mechanisms of consciousness: The neural correlates of emotional awareness.
        J Neurosci. 2010; 30: 10039-10047
        • Gobbini M.I.
        • Haxby J.V.
        Neural systems for recognition of familiar faces.
        Neuropsychologia. 2007; 45: 32-41
        • Cavanna A.E.
        • Trimble M.R.
        The precuneus: A review of its functional anatomy and behavioural correlates.
        Brain. 2006; 129: 564-583
        • Adolphs R.
        Recognizing emotion from facial expressions: Psychological and neurological mechanisms.
        Behav Cogn Neurosci Rev. 2002; 1: 21-62
        • Aggleton J.P.
        • Burton M.J.
        • Passingham R.E.
        Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta).
        Brain Res. 1980; 190: 347-368
        • Roberts A.C.
        • Tomic D.L.
        • Parkinson C.H.
        • Roeling T.A.
        • Cutter D.J.
        • Robbins T.W.
        • et al.
        Forebrain connectivity of the prefrontal cortex in the marmoset monkey (Callithrix jacchus): An anterograde and retrograde tract-tracing study.
        J Comp Neurol. 2007; 502: 86-112
        • Hornung J.P.
        The human raphe nuclei and the serotonergic system.
        J Chem Neuroanat. 2003; 26: 331-343
        • Haddjeri N.
        • Lavoie N.
        • Blier P.
        Electrophysiological evidence for the tonic activation of 5-HT(1A) autoreceptors in the rat dorsal raphe nucleus.
        Neuropsychopharmacology. 2004; 29: 1800-1806
        • Fisher P.M.
        • Meltzer C.C.
        • Price J.C.
        • Coleman R.L.
        • Ziolko S.K.
        • Becker C.
        • et al.
        Medial prefrontal cortex 5-HT(2A) density is correlated with amygdala reactivity, response habituation, and functional coupling.
        Cerebral Cortex. 2009; 19: 2499-2507
        • Fisher P.M.
        • Price J.C.
        • Meltzer C.C.
        • Moses-Kolko E.L.
        • Becker C.
        • Berga S.L.
        • et al.
        Medial prefrontal cortex serotonin 1A and 2A receptor binding interacts to predict threat-related amygdala reactivity.
        Biol Mood Anxiety Disord. 2011; 1: 2
        • Hariri A.R.
        • Mattay V.S.
        • Tessitore A.
        • Kolachana B.
        • Fera F.
        • Goldman D.
        • et al.
        Serotonin transporter genetic variation and the response of the human amygdala.
        Science. 2002; 297: 400-403
        • Milak M.S.
        • DeLorenzo C.
        • Zanderigo F.
        • Prabhakaran J.
        • Kumar J.S.
        • Majo V.J.
        • et al.
        In vivo quantification of human serotonin 1A receptor using 11C-CUMI-101, an agonist PET radiotracer.
        J Nucl Med. 2010; 51: 1892-1900
        • Tauscher J.
        • Verhoeff N.P.
        • Christensen B.K.
        • Hussey D.
        • Meyer J.H.
        • Kecojevic A.
        • et al.
        Serotonin 5-HT1A receptor binding potential declines with age as measured by [11C]WAY-100635 and PET.
        Neuropsychopharmacology. 2001; 24: 522-530
        • Parsey R.V.
        • Oquendo M.A.
        • Simpson N.R.
        • Ogden R.T.
        • Van Heertum R.
        • Arango V.
        • et al.
        Effects of sex, age, and aggressive traits in man on brain serotonin 5-HT1A receptor binding potential measured by PET using [C-11]WAY-100635.
        Brain Res. 2002; 954: 173-182
        • Moses-Kolko E.L.
        • Price J.C.
        • Shah N.
        • Berga S.
        • Sereika S.M.
        • Fisher P.M.
        • et al.
        Age, sex, and reproductive hormone effects on brain serotonin-1A and serotonin-2A receptor binding in a healthy population.
        Neuropsychopharmacology. 2011; 36: 2729-2740
        • Stein P.
        • Savli M.
        • Wadsak W.
        • Mitterhauser M.
        • Fink M.
        • Spindelegger C.
        • et al.
        The serotonin-1A receptor distribution in healthy men and women measured by PET and [carbonyl-11C]WAY-100635.
        Eur J Nucl Med Mol Imaging. 2008; 35: 2159-2168
        • Costes N.
        • Merlet I.
        • Ostrowsky K.
        • Faillenot I.
        • Lavenne F.
        • Zimmer L.
        • et al.
        A 18F-MPPF PET normative database of 5-HT1A receptor binding in men and women over aging.
        J Nucl Med. 2005; 46: 1980-1989
        • Fusar-Poli P.
        • Placentino A.
        • Carletti F.
        • Landi P.
        • Allen P.
        • Surguladze S.
        • et al.
        Functional atlas of emotional faces processing: A voxel-based meta-analysis of 105 functional magnetic resonance imaging studies.
        J Psychiatry Neurosci. 2009; 34: 418-432
        • Sheline Y.I.
        • Barch D.M.
        • Donnelly J.M.
        • Ollinger J.M.
        • Snyder A.Z.
        • Mintun M.A.
        Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: An fMRI study.
        Biol Psychiatry. 2001; 50: 651-658
        • Godlewska B.R.
        • Norbury R.
        • Selvaraj S.
        • Cowen P.J.
        • Harmer C.J.
        Short-term SSRI treatment normalises amygdala hyperactivity in depressed patients.
        Psychol Med. 2012; 42: 2609-2617
        • Bhagwagar Z.
        • Cowen P.J.
        • Goodwin G.M.
        • Harmer C.J.
        Normalization of enhanced fear recognition by acute SSRI treatment in subjects with a previous history of depression.
        Am J Psychiatry. 2004; 161: 166-168
        • Roiser J.P.
        • Elliott R.
        • Sahakian B.J.
        Cognitive mechanisms of treatment in depression.
        Neuropsychopharmacology. 2012; 37: 117-136