Advertisement

Preference for Distinct Functional Conformations of the Dopamine Transporter Alters the Relationship between Subjective Effects of Cocaine and Stimulation of Mesolimbic Dopamine

  • Stephen J. Kohut
    Affiliations
    Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
    Search for articles by this author
  • Takato Hiranita
    Affiliations
    Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
    Search for articles by this author
  • Soo-Kyung Hong
    Affiliations
    Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland

    Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
    Search for articles by this author
  • Aaron L. Ebbs
    Affiliations
    Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
    Search for articles by this author
  • Valeria Tronci
    Affiliations
    Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
    Search for articles by this author
  • Jennifer Green
    Affiliations
    Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
    Search for articles by this author
  • Linda Garcés-Ramírez
    Affiliations
    Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland

    Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.
    Search for articles by this author
  • Lauren E. Chun
    Affiliations
    Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
    Search for articles by this author
  • Maddalena Mereu
    Affiliations
    Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
    Search for articles by this author
  • Amy H. Newman
    Affiliations
    Medicinal Chemistry Sections, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland

    Medications Development Program, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
    Search for articles by this author
  • Jonathan L. Katz
    Affiliations
    Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
    Search for articles by this author
  • Gianluigi Tanda
    Correspondence
    Address correspondence to Gianluigi Tanda, Ph.D., National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Medication Development Program, NIDA Suite 200, 251 Bayview Blvd., Baltimore, MD 21224
    Affiliations
    Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland

    Medications Development Program, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
    Search for articles by this author

      Background

      Subjective effects of cocaine are mediated primarily by dopamine (DA) transporter (DAT) blockade. The present study assessed the hypothesis that different DAT conformational equilibria regulate differences in cocaine-like subjective effects and extracellular DA induced by diverse DA-uptake inhibitors (DUIs).

      Methods

      The relationship between cocaine-like subjective effects and stimulation of mesolimbic DA levels by standard DUIs (cocaine, methylphenidate, WIN35,428) and atypical DUIs (benztropine analogs: AHN1-055, AHN2-005, JHW007) was investigated using cocaine discrimination and DA microdialysis procedures in rats.

      Results

      All drugs stimulated DA levels with different maxima and time courses. Standard DUIs, which preferentially bind outward-facing DAT conformations, fully substituted for cocaine, consistently producing cocaine-like subjective effects at DA levels of 100–125% over basal values, regardless of dose or pretreatment time. The atypical DUIs, with DAT binding minimally affected by DAT conformation, produced inconsistent cocaine-like subjective effects. Full effects were obtained, if at all, only at a few doses and pretreatment times and at DA levels 600–700% greater than basal values. Importantly, the linear, time-independent, relationship between cocaine-like subjective effects and DA stimulation obtained with standard DUIs was not obtained with the atypical DUIs.

      Conclusions

      These results suggest a time-related desensitization process underlying the reduced cocaine subjective effects of atypical DUIs that may be differentially induced by the binding modalities identified using molecular approaches. Since the DAT is the target of several drugs for treating neuropsychiatric disorders, such as attention-deficit/hyperactivity disorder, these results help to identify safe and effective medications with minimal cocaine-like subjective effects that contribute to abuse liability.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Haertzen C.A.
        • Hickey J.E.
        Addiction Research Center Inventory (ARCI): Measurement of euphoria and other drug effects.
        in: Bozarth M.A. Methods of Assessing the Reinforcing Properties of Abused Drugs. Springer-Verlag, New York1987
        • Holtzman S.G.
        Drug discrimination studies.
        Drug Alcohol Depend. 1985; 14: 263-282
        • Schuster C.R.
        • Johanson C.E.
        Relationship between the discriminative stimulus properties and subjective effects of drugs.
        Psychopharmacol Ser. 1988; 4: 161-175
        • Callahan P.M.
        • De La Garza 2nd, R.
        • Cunningham K.A.
        Mediation of the discriminative stimulus properties of cocaine by mesocorticolimbic dopamine systems.
        Pharmacol Biochem Behav. 1997; 57: 601-607
        • Dworkin S.I.
        • Smith J.E.
        Neurobehavioral pharmacology of cocaine.
        NIDA Res Monogr. 1988; 88: 185-198
        • Wise R.A.
        Forebrain substrates of reward and motivation.
        J Comp Neurol. 2005; 493: 115-121
        • Czoty P.W.
        • Makriyannis A.
        • Bergman J.
        Methamphetamine discrimination and in vivo microdialysis in squirrel monkeys.
        Psychopharmacology (Berl). 2004; 175: 170-178
        • Desai R.I.
        • Paronis C.A.
        • Martin J.
        • Desai R.
        • Bergman J.
        Monoaminergic psychomotor stimulants: Discriminative stimulus effects and dopamine efflux.
        J Pharmacol Exp Ther. 2010; 333: 834-843
        • Volkow N.D.
        • Wang G.J.
        • Fischman M.W.
        • Foltin R.W.
        • Fowler J.S.
        • Abumrad N.N.
        • et al.
        Relationship between subjective effects of cocaine and dopamine transporter occupancy.
        Nature. 1997; 386: 827-830
        • Bergman J.
        • Madras B.K.
        • Johnson S.E.
        • Spealman R.D.
        Effects of cocaine and related drugs in nonhuman primates. III. Self-administration by squirrel monkeys.
        J Pharmacol Exp Ther. 1989; 251: 150-155
        • Katz J.L.
        • Izenwasser S.
        • Terry P.
        Relationships among dopamine transporter affinities and cocaine-like discriminative-stimulus effects.
        Psychopharmacology (Berl). 2000; 148: 90-98
        • Kuhar M.J.
        • Ritz M.C.
        • Boja J.W.
        The dopamine hypothesis of the reinforcing properties of cocaine.
        Trends Neurosci. 1991; 14: 299-302
        • Loland C.J.
        • Desai R.I.
        • Zou M.F.
        • Cao J.
        • Grundt P.
        • Gerstbrein K.
        • et al.
        Relationship between conformational changes in the dopamine transporter and cocaine-like subjective effects of uptake inhibitors.
        Mol Pharmacol. 2008; 73: 813-823
        • Newman A.H.
        • Katz J.L.
        Atypical dopamine uptake inhibitors that provide clues about cocaine׳s mechanism at the dopamine transporter.
        Top Med Chem. 2009; 4: 95-129
        • Runyon S.P.
        • Carroll F.I.
        Tropane-based dopamine transporter-uptake inhibitors.
        in: Trudell M.L. Izenwasser S. Dopamine Transporters, Chemistry, Biology, and Pharmacology. John Wiley & Sons, Hoboken, NJ2008: 125-170
        • Tanda G.
        • Newman A.
        • Katz J.L.
        Discovery of drugs to treat cocaine dependence: Behavioral and neurochemical effects of atypical dopamine transport inhibitors.
        in: Enna S.J. Williams M. Advances in Pharmacology, Contemporary Drug Discovery. San Diego: Academic Press. 2009: 253-289
        • Schmitt K.C.
        • Rothman R.B.
        • Reith M.E.
        Nonclassical pharmacology of the dopamine transporter: Atypical inhibitors, allosteric modulators, and partial substrates.
        J Pharmacol Exp Ther. 2013; 346: 2-10
        • Desai R.I.
        • Kopajtic T.A.
        • French D.
        • Newman A.H.
        • Katz J.L.
        Relationship between in vivo occupancy at the dopamine transporter and behavioral effects of cocaine, GBR 12909 [1-{2-[bis-(4-fluorophenyl)methoxy]ethyl}-4-(3-phenylpropyl)piperazine], and benztropine analogs.
        J Pharmacol Exp Ther. 2005; 315: 397-404
        • Punja S.
        • Zorzela L.
        • Hartling L.
        • Urichuk L.
        • Vohra S.
        Long-acting versus short-acting methylphenidate for paediatric ADHD: A systematic review and meta-analysis of comparative efficacy.
        BMJ Open. 2013; 3: e002312
        • Beuming T.
        • Kniazeff J.
        • Bergmann M.L.
        • Shi L.
        • Gracia L.
        • Raniszewska K.
        • et al.
        The binding sites for cocaine and dopamine in the dopamine transporter overlap.
        Nat Neurosci. 2008; 11: 780-789
        • Schmitt K.C.
        • Reith M.E.
        The atypical stimulant and nootropic modafinil interacts with the dopamine transporter in a different manner than classical cocaine-like inhibitors.
        PLoS One. 2011; 6: e25790
        • Agoston G.E.
        • Wu J.H.
        • Izenwasser S.
        • George C.
        • Katz J.
        • Kline R.H.
        • Newman A.H.
        Novel N-substituted 3 alpha-[bis(4׳-fluorophenyl)methoxy]tropane analogues: Selective ligands for the dopamine transporter.
        J Med Chem. 1997; 40: 4329-4339
        • Newman A.H.
        • Kline R.H.
        • Allen A.C.
        • Izenwasser S.
        • George C.
        • Katz J.L.
        Novel 4’-substituted and 4’,4”-disubstituted 3 alpha-(diphenylmethoxy)tropane analogs as potent and selective dopamine uptake inhibitors.
        J Med Chem. 1995; 38: 3933-3940
        • Berridge C.W.
        • Devilbiss D.M.
        • Spencer R.C.
        • Schmeichel B.E.
        • Arnsten F.T.
        Attention deficit hyperactivity disorder.
        in: Barrett J.E. Coyle J.T. Williams M. Translational Neuroscience. Cambridge University Press, New York2012: 303-320
        • Schmeichel B.E.
        • Zemlan F.P.
        • Berridge C.W.
        A selective dopamine reuptake inhibitor improves prefrontal cortex-dependent cognitive function: Potential relevance to attention deficit hyperactivity disorder.
        Neuropharmacology. 2013; 64: 321-328
        • Tanda G.
        • Pontieri F.E.
        • Di Chiara G.
        Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism.
        Science. 1997; 276: 2048-2050
        • Tanda G.
        • Pontieri F.E.
        • Frau R.
        • Di Chiara G.
        Contribution of blockade of the noradrenaline carrier to the increase of extracellular dopamine in the rat prefrontal cortex by amphetamine and cocaine.
        Eur J Neurosci. 1997; 9: 2077-2085
        • Zahm D.S.
        Functional-anatomical implications of the nucleus accumbens core and shell subterritories.
        Ann N Y Acad Sci. 1999; 877: 113-128
        • Pontieri F.E.
        • Tanda G.
        • Di Chiara G.
        Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens.
        Proc Natl Acad Sci U S A. 1995; 92: 12304-12308
        • Paxinos G.
        • Watson C.
        The Rat Brain in Stereotaxic Coordinates, 4th ed.
        Academic Press, San Diego1998
        • Garces-Ramirez L.
        • Green J.L.
        • Hiranita T.
        • Kopajtic T.A.
        • Mereu M.
        • Thomas A.
        • et al.
        Sigma receptor agonists: Receptor binding and effects on mesolimbic dopamine neurotransmission assessed by microdialysis.
        Biol Psychiatry. 2011; 69: 208-217
        • Tanda G.
        • Ebbs A.
        • Newman A.H.
        • Katz J.L.
        Effects of 4׳-chloro-3 alpha-(diphenylmethoxy)-tropane on mesostriatal, mesocortical, and mesolimbic dopamine transmission: Comparison with effects of cocaine.
        J Pharmacol Exp Ther. 2005; 313: 613-620
        • Tanda G.
        • Ebbs A.L.
        • Kopajtic T.A.
        • Elias L.M.
        • Campbell B.L.
        • Newman A.H.
        • Katz J.L.
        Effects of muscarinic M1 receptor blockade on cocaine-induced elevations of brain dopamine levels and locomotor behavior in rats.
        J Pharmacol Exp Ther. 2007; 321: 334-344
        • Snedecor G.W.
        • Cochran W.G.
        Statistical Methods.
        6th ed. Iowa State University Press, Ames, IA1967
        • Baker L.E.
        • Riddle E.E.
        • Saunders R.B.
        • Appel J.B.
        The role of monoamine uptake in the discriminative stimulus effects of cocaine and related compounds.
        Behav Pharmacol. 1993; 4: 69-79
        • Broadbent J.
        • Michael E.K.
        • Riddle E.E.
        • Apple J.B.
        Involvement of dopamine uptake in the discriminative stimulus effects of cocaine.
        Behav Pharmacol. 1991; 2: 187-197
        • Tanda G.
        • Li S.M.
        • Mereu M.
        • Thomas A.M.
        • Ebbs A.L.
        • Chun L.E.
        • et al.
        Relations between stimulation of mesolimbic dopamine and place conditioning in rats produced by cocaine or drugs that are tolerant to dopamine transporter conformational change.
        Psychopharmacology (Berl). 2013; 229: 307-321
        • Kollins S.H.
        Abuse liability of medications used to treat attention-deficit/hyperactivity disorder (ADHD).
        Am J Addict. 2007; 16 (quiz 43–44): 35-42
        • Wilens T.E.
        • Adler L.A.
        • Adams J.
        • Sgambati S.
        • Rotrosen J.
        • Sawtelle R.
        • et al.
        Misuse and diversion of stimulants prescribed for ADHD: A systematic review of the literature.
        J Am Acad Child Adolesc Psychiatry. 2008; 47: 21-31
        • Ferragud A.
        • Velazquez-Sanchez C.
        • Hernandez-Rabaza V.
        • Nacher A.
        • Merino V.
        • Carda M.
        • et al.
        A dopamine transport inhibitor with markedly low abuse liability suppresses cocaine self-administration in the rat.
        Psychopharmacology (Berl). 2009; 207: 281-289
        • Hiranita T.
        • Soto P.L.
        • Newman A.H.
        • Katz J.L.
        Assessment of reinforcing effects of benztropine analogs and their effects on cocaine self-administration in rats: Comparisons with monoamine uptake inhibitors.
        J Pharmacol Exp Ther. 2009; 329: 677-686
        • Li S.M.
        • Kopajtic T.A.
        • O׳Callaghan M.J.
        • Agoston G.E.
        • Cao J.
        • Newman A.H.
        • et al.
        N-substituted benztropine analogs: Selective dopamine transporter ligands with a fast onset of action and minimal cocaine-like behavioral effects.
        J Pharmacol Exp Ther. 2011; 336: 575-585
        • Hiranita T.
        • Kohut S.J.
        • Soto P.L.
        • Tanda G.
        • Kopajtic T.A.
        • Katz J.L.
        Preclinical efficacy of N-substituted benztropine analogs as antagonists of methamphetamine self-administration in rats.
        J Pharmacol Exp Ther. 2014; 348: 174-191
        • Velazquez-Sanchez C.
        • Ferragud A.
        • Murga J.
        • Carda M.
        • Canales J.J.
        The high affinity dopamine uptake inhibitor, JHW 007, blocks cocaine-induced reward, locomotor stimulation and sensitization.
        Eur Neuropsychopharmacol. 2010; 20: 501-508
        • Velazquez-Sanchez C.
        • Ferragud A.
        • Renau-Piqueras J.
        • Canales J.J.
        Therapeutic-like properties of a dopamine uptake inhibitor in animal models of amphetamine addiction.
        Int J Neuropsychopharmacol. 2010; 14: 655-665
        • Chen N.
        • Zhen J.
        • Reith M.E.
        Mutation of Trp84 and Asp313 of the dopamine transporter reveals similar mode of binding interaction for GBR12909 and benztropine as opposed to cocaine.
        J Neurochem. 2004; 89: 853-864
        • Kopajtic T.A.
        • Liu Y.
        • Surratt C.K.
        • Donovan D.M.
        • Newman A.H.
        • Katz J.L.
        Dopamine transporter-dependent and -independent striatal binding of the benztropine analog JHW 007, a cocaine antagonist with low abuse liability.
        J Pharmacol Exp Ther. 2010; 335: 703-714
        • Reith M.E.
        • Berfield J.L.
        • Wang L.C.
        • Ferrer J.V.
        • Javitch J.A.
        The uptake inhibitors cocaine and benztropine differentially alter the conformation of the human dopamine transporter.
        J Biol Chem. 2001; 276: 29012-29018
        • Campbell V.C.
        • Kopajtic T.A.
        • Newman A.H.
        • Katz J.L.
        Assessment of the influence of histaminergic actions on cocaine-like effects of 3alpha-diphenylmethoxytropane analogs.
        J Pharmacol Exp Ther. 2005; 315: 631-640
        • Tanda G.
        • Kopajtic T.A.
        • Katz J.L.
        Cocaine-like neurochemical effects of antihistaminic medications.
        J Neurochem. 2008; 106: 147-157
        • Katz J.L.
        • Kopajtic T.A.
        • Agoston G.E.
        • Newman A.H.
        Effects of N-substituted analogs of benztropine: Diminished cocaine-like effects in dopamine transporter ligands.
        J Pharmacol Exp Ther. 2004; 309: 650-660
        • Hiranita T.
        • Soto P.L.
        • Kohut S.J.
        • Kopajtic T.
        • Cao J.
        • Newman A.H.
        • et al.
        Decreases in cocaine self-administration with dual inhibition of the dopamine transporter and sigma receptors.
        J Pharmacol Exp Ther. 2011; 339: 662-677
        • Carroll F.I.
        • Howell L.L.
        • Kuhar M.J.
        Pharmacotherapies for treatment of cocaine abuse: Preclinical aspects.
        J Med Chem. 1999; 42: 2721-2736
        • Hiranita T.
        • Wilkinson D.S.
        • Hong W.C.
        • Zou M.F.
        • Kopajtic T.A.
        • Soto P.L.
        • et al.
        2-Isoxazol-3-phenyltropane derivatives of cocaine: molecular and atypical system effects at the dopamine transporter.
        J Pharmacol Exp Ther. 2014; 349 (doi:10.1124/jpet.113.212738): 297-309
        • Desai R.I.
        • Kopajtic T.A.
        • Koffarnus M.
        • Newman A.H.
        • Katz J.L.
        Identification of a dopamine transporter ligand that blocks the stimulant effects of cocaine.
        J Neurosci. 2005; 25: 1889-1893
        • Raje S.
        • Cao J.
        • Newman A.H.
        • Gao H.
        • Eddington N.D.
        Evaluation of the blood-brain barrier transport, population pharmacokinetics, and brain distribution of benztropine analogs and cocaine using in vitro and in vivo techniques.
        J Pharmacol Exp Ther. 2003; 307: 801-808
        • Raje S.
        • Cornish J.
        • Newman A.H.
        • Cao J.
        • Katz J.L.
        • Eddington N.D.
        Pharmacodynamic assessment of the benztropine analogues AHN-1055 and AHN-2005 using intracerebral microdialysis to evaluate brain dopamine levels and pharmacokinetic/pharmacodynamic modeling.
        Pharm Res. 2005; 22: 603-612
        • Tanda G.
        • Newman A.
        • Ebbs A.L.
        • Tronci V.
        • Green J.
        • Tallarida R.J.
        • Katz J.L.
        Combinations of cocaine with other dopamine uptake inhibitors: Assessment of additivity.
        J Pharmacol Exp Ther. 2009; 330: 802-809
        • Katz N.S.
        • Guiard B.P.
        • El Mansari M.
        • Blier P.
        Effects of acute and sustained administration of the catecholamine reuptake inhibitor nomifensine on the firing activity of monoaminergic neurons.
        J Psychopharmacol. 2010; 24: 1223-1235
        • Newman A.H.
        • Kulkarni S.
        Probes for the dopamine transporter: New leads toward a cocaine-abuse therapeutic--A focus on analogues of benztropine and rimcazole.
        Med Res Rev. 2002; 22: 429-464