Advertisement

Activation of DREAM (Downstream Regulatory Element Antagonistic Modulator), a Calcium-Binding Protein, Reduces L-DOPA-Induced Dyskinesias in Mice

      Abstract

      Background

      Previous studies have implicated the cyclic adenosine monophosphate/protein kinase A pathway as well as FosB and dynorphin-B expression mediated by dopamine D1 receptor stimulation in the development of 3,4-dihydroxyphenyl-L-alanine (L-DOPA)–induced dyskinesia. The magnitude of these molecular changes correlates with the intensity of dyskinesias. The calcium-binding protein downstream regulatory element antagonistic modulator (DREAM) binds to regulatory element sites called DRE in the DNA and represses transcription of target genes such as c-fos, fos-related antigen-2 (fra-2), and prodynorphin. This repression is released by calcium and protein kinase A activation. Dominant-active DREAM transgenic mice (daDREAM) and DREAM knockout mice (DREAM−/−) were used to define the involvement of DREAM in dyskinesias.

      Methods

      Dyskinesias were evaluated twice a week in mice with 6-hydroxydopamine lesions during long-term L-DOPA (25 mg/kg) treatment. The impact of DREAM on L-DOPA efficacy was evaluated using the rotarod and the cylinder test after the establishment of dyskinesia and the molecular changes by immunohistochemistry and Western blot.

      Results

      In daDREAM mice, L-DOPA-induced dyskinesia was decreased throughout the entire treatment. In correlation with these behavioral results, daDREAM mice showed a decrease in FosB, phosphoacetylated histone H3, dynorphin-B, and phosphorylated glutamate receptor subunit, type 1 expression. Conversely, genetic inactivation of DREAM potentiated the intensity of dyskinesia, and DREAM−/− mice exhibited an increase in expression of molecular markers associated with dyskinesias. The DREAM modifications did not affect the kinetic profile or antiparkinsonian efficacy of L-DOPA therapy.

      Conclusions

      The protein DREAM decreases development of L-DOPA-induced dyskinesia in mice and reduces L-DOPA-induced expression of FosB, phosphoacetylated histone H3, and dynorphin-B in the striatum. These data suggest that therapeutic approaches that activate DREAM may be useful to alleviate L-DOPA-induced dyskinesia without interfering with the therapeutic motor effects of L-DOPA.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pavón N.
        • Martín A.B.
        • Mendialdua A.
        • Moratalla R.
        ERK phosphorylation and FosB expression are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice.
        Biol Psychiatry. 2006; 59: 64-74
        • Murer M.G.
        • Moratalla R.
        Striatal signaling in L-DOPA-induced dyskinesia: Common mechanisms with drug abuse and long term memory involving D1 dopamine receptor stimulation.
        Front Neuroanat. 2011; 5: 51
        • Delfino M.
        • Kalisch R.
        • Czisch M.
        • Larramendy C.
        • Ricatti J.
        • Taravini I.R.
        • et al.
        Mapping the effects of three dopamine agonists with different dyskinetogenic potential and receptor selectivity using pharmacological functional magnetic resonance imaging.
        Neuropsychopharmacology. 2007; 32: 1911-1921
        • Lebel M.
        • Chagniel L.
        • Bureau G.
        • Cyr M.
        Striatal inhibition of PKA prevents levodopa-induced behavioural and molecular changes in the hemiparkinsonian rat.
        Neurobiol Dis. 2010; 38: 59-67
        • Fisone G.
        • Bezard E.
        Molecular mechanisms of L-DOPA-induced dyskinesia.
        Int Rev Neurobiol. 2011; 98: 95-122
        • Santini E.
        • Valjent E.
        • Usiello A.
        • Carta M.
        • Borgkvist A.
        • Girault J.A.
        • et al.
        Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia.
        J Neurosci. 2007; 27: 6995-7005
        • Santini E.
        • Feyder M.
        • Gangarossa G.
        • Bateup H.S.
        • Greengard P.
        • Fisone G.
        Dopamine- and cAMP-regulated phosphoprotein of 32-kDa (DARPP-32)-dependent activation of extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin complex 1 (mTORC1) signaling in experimental parkinsonism.
        J Biol Chem. 2012; 287: 27806-27812
        • Schuster S.
        • Nadjar A.
        • Guo J.T.
        • Li Q.
        • Ittrich C.
        • Hengerer B.
        • et al.
        The 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor lovastatin reduces severity of L-DOPA-induced abnormal involuntary movements in experimental Parkinson’s disease.
        J Neurosci. 2008; 28: 4311-4316
        • Fasano S.
        • Bezard E.
        • D’Antoni A.
        • Francardo V.
        • Indrigo M.
        • Qin L.
        • et al.
        Inhibition of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) signaling in the striatum reverts motor symptoms associated with L-dopa-induced dyskinesia.
        Proc Natl Acad Sci U S A. 2010; 107: 21824-21829
        • Darmopil S.
        • Martín A.B.
        • De Diego I.R.
        • Ares S.
        • Moratalla R.
        Genetic inactivation of dopamine D1 but not D2 receptors inhibits L-DOPA-induced dyskinesia and histone activation.
        Biol Psychiatry. 2009; 66: 603-613
        • Santini E.
        • Alcacer C.
        • Cacciatore S.
        • Heiman M.
        • Hervé D.
        • Greengard P.
        • et al.
        L-DOPA activates ERK signaling and phosphorylates histone H3 in the striatonigral medium spiny neurons of hemiparkinsonian mice.
        J Neurochem. 2009; 108: 621-633
        • Chase T.N.
        • Oh J.D.
        • Konitsiotis S.
        Antiparkinsonian and antidyskinetic activity of drugs targeting central glutamatergic mechanisms.
        J Neurol. 2000; 247: II36-II42
        • Hallett P.J.
        • Dunah A.W.
        • Ravenscroft P.
        • Zhou S.
        • Bezard E.
        • Crossman A.R.
        • et al.
        Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease.
        Neuropharmacology. 2005; 48: 503-516
        • Gardoni F.
        • Picconi B.
        • Ghiglieri V.
        • Polli F.
        • Bagetta V.
        • Bernardi G.
        • et al.
        A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia.
        J Neurosci. 2006; 26: 2914-2922
        • Silverdale M.A.
        • Kobylecki C.
        • Hallett P.J.
        • Li Q.
        • Dunah A.W.
        • Ravenscroft P.
        • et al.
        Synaptic recruitment of AMPA glutamate receptor subunits in levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate.
        Synapse. 2010; 64: 177-180
        • Berthet A.
        • Porras G.
        • Doudnikoff E.
        • Stark H.
        • Cador M.
        • Bezard E.
        • et al.
        Pharmacological analysis demonstrates dramatic alteration of D1 dopamine receptor neuronal distribution in the rat analog of L-DOPA-induced dyskinesia.
        J Neurosci. 2009; 29: 4829-4835
        • Nash J.E.
        • Johnston T.H.
        • Collingridge G.L.
        • Garner C.C.
        • Brotchie J.M.
        Subcellular redistribution of the synapse-associated proteins PSD-95 and SAP97 in animal models of Parkinson’s disease and L-DOPA-induced dyskinesia.
        FASEB J. 2005; 19: 583-585
        • Porras G.
        • Berthet A.
        • Dehay B.
        • Li Q.
        • Ladepeche L.
        • Normand E.
        • et al.
        PSD-95 expression controls L-DOPA dyskinesia through dopamine D1 receptor trafficking.
        J Clin Invest. 2012; 122: 3977-3989
        • Surmeier D.J.
        • Bargas J.
        • Hemmings Jr, H.C.
        • Nairn A.C.
        • Greengard P.
        Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons.
        Neuron. 1995; 14: 385-397
        • Schuster S.
        • Doudnikoff E.
        • Rylander D.
        • Berthet A.
        • Aubert I.
        • Ittrich C.
        • et al.
        Antagonizing L-type Ca2+ channel reduces development of abnormal involuntary movement in the rat model of L-3,4-dihydroxyphenylalanine-induced dyskinesia.
        Biol Psychiatry. 2009; 65: 518-526
        • Ledo F.
        • Link W.A.
        • Carrión A.M.
        • Echeverria V.
        • Mellström B.
        • Naranjo J.R.
        The DREAM-DRE interaction: key nucleotides and dominant negative mutants.
        Biochim Biophys Acta. 2000; 1498: 162-168
        • Cebolla B.
        • Fernández-Pérez A.
        • Perea G.
        • Araque A.
        • Vallejo M.
        DREAM mediates cAMP-dependent, Ca2+-induced stimulation of GFAP gene expression and regulates cortical astrogliogenesis.
        J Neurosci. 2008; 28: 6703-6713
        • Spreafico F.
        • Barski J.J.
        • Farina C.
        • Meyer M.
        Mouse DREAM/calsenilin/KChIP3: Gene structure, coding potential, and expression.
        Mol Cell Neurosci. 2001; 17: 1-16
        • Xiong H.
        • Kovacs I.
        • Zhang Z.
        Differential distribution of KChIPs mRNAs in adult mouse brain.
        Brain Res Mol Brain Res. 2004; 128: 103-111
        • Duncan C.E.
        • Schofield P.R.
        • Weickert C.S.
        K(v) channel interacting protein 3 expression and regulation by haloperidol in midbrain dopaminergic neurons.
        Brain Res. 2009; 1304: 1-13
        • Carrión A.M.
        • Link W.A.
        • Ledo F.
        • Mellström B.
        • Naranjo J.R.
        DREAM is a Ca2+-regulated transcriptional repressor.
        Nature. 1999; 398: 80-84
        • Link W.A.
        • Ledo F.
        • Torres B.
        • Palczewska M.
        • Madsen T.M.
        • Savignac M.
        • et al.
        Day-night changes in downstream regulatory element antagonist modulator/potassium channel interacting protein activity contribute to circadian gene expression in pineal gland.
        J Neurosci. 2004; 24: 5346-5355
        • Ledo F.
        • Carrión A.M.
        • Link W.A.
        • Mellström B.
        • Naranjo J.R.
        DREAM-alphaCREM interaction via leucine-charged domains derepresses downstream regulatory element-dependent transcription.
        Mol Cell Biol. 2000; 20: 9120-9126
        • Ledo F.
        • Kremer L.
        • Mellström B.
        • Naranjo J.R.
        Ca2+-dependent block of CREB-CBP transcription by repressor DREAM.
        EMBO J. 21. 2002: 4583-4592
        • Osawa M.
        • Tong K.I.
        • Lilliehook C.
        • Wasco W.
        • Buxbaum J.D.
        • Cheng H.Y.
        • et al.
        Calcium-regulated DNA binding and oligomerization of the neuronal calcium-sensing protein, calsenilin/DREAM/KChIP3.
        J Biol Chem. 2001; 276: 41005-41013
        • Rivas M.
        • Villar D.
        • González P.
        • Dopazo X.M.
        • Mellstrom B.
        • Naranjo J.R.
        Building the DREAM interactome.
        Sci China Life Sci. 2011; 54: 786-792
        • Zhang Y.
        • Su P.
        • Liang P.
        • Liu T.
        • Liu X.
        • Liu X.Y.
        • et al.
        The DREAM protein negatively regulates the NMDA receptor through interaction with the NR1 subunit.
        J Neurosci. 2010; 30: 7575-7586
        • Wu L.J.
        • Mellström B.
        • Wang H.
        • Ren M.
        • Domingo S.
        • Kim S.S.
        • et al.
        DREAM (downstream regulatory element antagonist modulator) contributes to synaptic depression and contextual fear memory.
        Mol Brain. 2010; 3: 3
        • Gomez-Villafuertes R.
        • Torres B.
        • Barrio J.
        • Savignac M.
        • Gabellini N.
        • Rizzato F.
        • et al.
        Downstream regulatory element antagonist modulator regulates Ca2+ homeostasis and viability in cerebellar neurons.
        J Neurosci. 2005; 25: 10822-10830
        • Savignac M.
        • Pintado B.
        • Gutierrez-Adan A.
        • Palczewska M.
        • Mellström B.
        • Naranjo J.R.
        Transcriptional repressor DREAM regulates T-lymphocyte proliferation and cytokine gene expression.
        EMBO J. 2005; 24: 3555-3564
        • Cheng H.Y.
        • Pitcher G.M.
        • Laviolette S.R.
        • Whishaw I.Q.
        • Tong K.I.
        • Kockeritz L.K.
        • et al.
        DREAM is a critical transcriptional repressor for pain modulation.
        Cell. 2002; 108: 31-43
        • Mayford M.
        • Bach M.E.
        • Huang Y.Y.
        • Wang L.
        • Hawkins R.D.
        • Kandel E.R.
        Control of memory formation through regulated expression of a CaMKII transgene.
        Science. 1996; 274: 1678-1683
        • Suárez L.M.
        • Solís O.
        • Caramés J.M.
        • Taravini I.R.
        • Solís J.M.
        • Murer M.G.
        • et al.
        L-DOPA treatment selectively restores spine density in dopamine receptor D2-expressing projection neurons in dyskinetic mice [published online ahead of print Jun 12].
        Biol Psychiatry. 2013;
        • Darmopil S.
        • Muñetón-Gómez V.C.
        • de Ceballos M.L.
        • Bernson M.
        • Moratalla R.
        Tyrosine hydroxylase cells appearing in the mouse striatum after dopamine denervation are likely to be projection neurones regulated by L-DOPA.
        Eur J Neurosci. 2008; 27: 580-592
        • Granado N.
        • Ortiz O.
        • Suárez L.M.
        • Martín E.D.
        • Ceña V.
        • Solís J.M.
        • et al.
        D1 but not D5 dopamine receptors are critical for LTP, spatial learning, and LTP-induced arc and zif3268 expression in the hippocampus.
        Cereb Cortex. 2008; 18: 1-12
        • González-Aparicio R.
        • Moratalla R.
        Oleoylethanolamide reduces L-DOPA-induced dyskinesia via TRPV1 receptor in a mouse model of Parkinson’s disease.
        Neurobiol Dis. 2014; 62: 416-425
        • Espadas I.
        • Darmopil S.
        • Vergaño-Vera E.
        • Ortiz O.
        • Oliva I.
        • Vicario-Abejón C.
        • et al.
        L-DOPA-induced increase in TH-immunoreactive striatal neurons in parkinsonian mice: Insights into regulation and function.
        Neurobiol Dis. 2012; 48: 271-281
        • Ares-Santos S.
        • Granado N.
        • Oliva I.
        • O’Shea E.
        • Martin E.D.
        • Colado M.I.
        Dopamine D(1) receptor deletion strongly reduces neurotoxic effects of methamphetamine.
        Neurobiol Dis. 2012; 45: 810-820
        • Ares-Santos S.
        • Granado N.
        • Espadas I.
        • Martinez-Murillo R.
        • Moratalla R.
        Methamphetamine causes degeneration of dopamine cell bodies and terminals of the nigrostriatal pathway evidenced by silver staining.
        Neuropsychopharmacology. 2014; 39: 1066-1080
        • Granado N.
        • Escobedo I.
        • O’Shea E.
        • Colado I.
        • Moratalla R.
        Early loss of dopaminergic terminals in striosomes after MDMA administration to mice.
        Synapse. 2008; 62: 80-84
        • Livak K.
        • Schmittgen T.D.
        Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method.
        Methods. 2001; 25: 402-408
        • Francardo V.
        • Recchia A.
        • Popovic N.
        • Andersson D.
        • Nissbrandt H.
        • Cenci M.A.
        Impact of the lesion procedure on the profiles of motor impairment and molecular responsiveness to L-DOPA in the 6-hydroxydopamine mouse model of Parkinson’s disease.
        Neurobiol Dis. 42. 2011: 327-340
        • Andersson M.
        • Hilbertson A.
        • Cenci M.A.
        Striatal fosB expression is causally linked with l-DOPA-induced abnormal involuntary movements and the associated upregulation of striatal prodynorphin mRNA in a rat model of Parkinson’s disease.
        Neurobiol Dis. 1999; 6: 461-474
        • Santini E.
        • Sgambato-Faure V.
        • Li Q.
        • Savasta M.
        • Dovero S.
        • Fisone G.
        • et al.
        Distinct changes in cAMP and extracellular signal-regulated protein kinase signalling in L-DOPA-induced dyskinesia.
        PLoS One. 2010; 5: e12322
        • Alexander J.C.
        • McDermott C.M.
        • Tunur T.
        • Rands V.
        • Stelly C.
        • Karhson D.
        • et al.
        The role of calsenilin/DREAM/KChIP3 in contextual fear conditioning.
        Learn Mem. 2009; 16: 167-177
        • Dierssen M.
        • Fedrizzi L.
        • Gomez-Villafuertes R.
        • de Lagran M.M.
        • Gutierrez-Adan A.
        • Sahún I.
        • et al.
        Reduced Mid1 expression and delayed neuromotor development in daDREAM transgenic mice.
        Front Mol Neurosci. 2012; 5: 58
        • Naranjo J.R.
        • Mellström B.
        Ca2+-dependent transcriptional control of Ca2+ homeostasis.
        J Biol Chem. 287. 2012: 31674-31680
        • Piccini P.
        • Weeks R.A.
        • Brooks D.J.
        Alterations in opioid receptor binding in Parkinson’s disease patients with levodopa-induced dyskinesias.
        Ann Neurol. 1997; 42: 720-726
        • Tekumalla P.K.
        • Calon F.
        • Rahman Z.
        • Birdi S.
        • Rajput A.H.
        • Hornykiewicz O.
        • et al.
        Elevated levels of DeltaFosB and RGS9 in striatum in Parkinson’s disease.
        Biol Psychiatry. 2001; 50: 813-816
        • Berton O.
        • Guigoni C.
        • Li Q.
        • Bioulac B.H.
        • Aubert I.
        • Gross C.E.
        • et al.
        Striatal overexpression of DeltaJunD resets L-DOPA-induced dyskinesia in a primate model of Parkinson disease.
        Biol Psychiatry. 2009; 66: 554-561
        • Tamim M.K.
        • Samadi P.
        • Morissette M.
        • Grégoire L.
        • Ouattara B.
        • Lévesque D.
        • et al.
        Effect of non-dopaminergic drug treatment on levodopa induced dyskinesias in MPTP monkeys: Common implication of striatal neuropeptides.
        Neuropharmacology. 2010; 58: 286-296
        • Lazo P.S.
        • Dorfman K.
        • Noguchi T.
        • Mattéi M.G.
        • Bravo R.
        Structure and mapping of the fosB gene. FosB downregulates the activity of the fosB promoter.
        Nucleic Acids Res. 1992; 20: 343-350
        • Moratalla R.
        • Xu M.
        • Tonegawa S.
        • Graybiel A.M.
        Cellular responses to psychomotor stimulant and neuroleptic drugs are abnormal in mice lacking the D1 dopamine receptor.
        Proc Natl Acad Sci U S A. 1996; 93: 14928-14933
        • Naranjo J.R.
        • Mellström B.
        • Achaval M.
        • Sassone-Corsi P.
        Molecular pathways of pain: Fos/Jun-mediated activation of a noncanonical AP-1 site in the prodynorphin gene.
        Neuron. 1991; 6: 607-617
        • An W.F.
        • Bowlby M.R.
        • Betty M.
        • Cao J.
        • Ling H.P.
        • Mendoza G.
        • et al.
        Modulation of A-type potassium channels by a family of calcium sensors.
        Nature. 2000; 403: 553-556
        • Rivas M.
        • Mellström B.
        • Torres B.
        • Cali G.
        • Ferrara A.M.
        • Terracciano D.
        • et al.
        The DREAM Protein is associated to thyroid enlargement and nodular development.
        Mol Endocrinol. 2009; 23: 862-870
        • Zhang Y.
        • Meredith G.E.
        • Mendoza-Elias N.
        • Rademacher D.J.
        • Tseng K.Y.
        • Steece-Collier K.
        Aberrant restoration of spines and their synapses in L-DOPA-induced dyskinesia: Involvement of corticostriatal but not thalamostriatal synapses.
        J Neurosci. 2013; 33: 11655-11667
        • Papa S.M.
        • Boldry R.C.
        • Engber T.M.
        • Kask A.M.
        • Chase T.N.
        Reversal of levodopa-induced motor fluctuations in experimental parkinsonism by NMDA receptor blockade.
        Brain Res. 1995; 701: 13-18
        • Blanchet P.J.
        • Metman L.V.
        • Chase T.N.
        Renaissance of amantadine in the treatment of Parkinson’s disease.
        Adv Neurol. 2003; 91: 251-257
        • Harrison I.F.
        • Dexter D.T.
        Epigenetic targeting of histone deacetylase: Therapeutic potential in Parkinson’s disease?.
        Pharmacol Ther. 2013; 140: 34-52
        • Cheung P.
        • Tanner K.G.
        • Cheung W.L.
        • Sassone-Corsi P.
        • Denu J.M.
        • Allis C.D.
        Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation.
        Mol Cell. 2000; 5: 905-915
        • Alcacer C.
        • Santini E.
        • Valjent E.
        • Gaven F.
        • Girault J.A.
        • Hervé D.
        Gα(olf) mutation allows parsing the role of cAMP-dependent and extracellular signal-regulated kinase-dependent signaling in L-3,4-dihydroxyphenylalanine-induced dyskinesia.
        J Neurosci. 2012; 32: 5900-5910
        • Malinow R.
        • Mainen Z.F.
        • Hayashi Y.
        LTP mechanisms: From silence to four-lane traffic.
        Curr Opin Neurobiol. 2000; 10: 352-357
        • Malenka R.C.
        Synaptic plasticity and AMPA receptor trafficking.
        Ann N Y Acad Sci. 2003; 1003: 1-11
        • Shepherd J.D.
        • Huganir R.L.
        The cell biology of synaptic plasticity: AMPA receptor trafficking.
        Annu Rev Cell Dev Biol. 2007; 23: 613-643
        • Thomsen M.B.
        • Wang C.
        • Ozgen N.
        • Wang H.G.
        • Rosen M.R.
        • Pitt G.S.
        Accessory subunit KChIP2 modulates the cardiac L-type calcium current.
        Circ Res. 2009; 104: 1382-1389
        • Anderson D.
        • Mehaffey W.H.
        • Iftinca M.
        • Rehak R.
        • Engbers J.D.
        • Hameed S.
        • et al.
        Regulation of neuronal activity by Cav3-Kv4 channel signaling complexes.
        Nat Neurosci. 2010; 13: 333-337