Advertisement
Archival Report| Volume 76, ISSUE 8, P648-655, October 15, 2014

Download started.

Ok

Neuregulin-3 in the Mouse Medial Prefrontal Cortex Regulates Impulsive Action

  • Author Footnotes
    1 Authors ML and TM contributed equally to this work.
    Maarten Loos
    Footnotes
    1 Authors ML and TM contributed equally to this work.
    Affiliations
    Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam

    Sylics (Synaptologics BV), Amsterdam, The Netherlands
    Search for articles by this author
  • Author Footnotes
    1 Authors ML and TM contributed equally to this work.
    Thomas Mueller
    Footnotes
    1 Authors ML and TM contributed equally to this work.
    Affiliations
    Department of Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
    Search for articles by this author
  • Yvonne Gouwenberg
    Affiliations
    Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam
    Search for articles by this author
  • Ruud Wijnands
    Affiliations
    Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam

    Sylics (Synaptologics BV), Amsterdam, The Netherlands
    Search for articles by this author
  • Rolinka J. van der Loo
    Affiliations
    Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam

    Sylics (Synaptologics BV), Amsterdam, The Netherlands
    Search for articles by this author
  • Carmen Birchmeier
    Affiliations
    Department of Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
    Search for articles by this author
  • Author Footnotes
    2 Authors ABS and SS contributed equally to this work.
    August B. Smit
    Footnotes
    2 Authors ABS and SS contributed equally to this work.
    Affiliations
    Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam
    Search for articles by this author
  • Author Footnotes
    2 Authors ABS and SS contributed equally to this work.
    Sabine Spijker
    Correspondence
    Address correspondence to Sabine Spijker, Ph.D., Neuroscience Campus Amsterdam, VU University, Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
    Footnotes
    2 Authors ABS and SS contributed equally to this work.
    Affiliations
    Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam
    Search for articles by this author
  • Author Footnotes
    1 Authors ML and TM contributed equally to this work.
    2 Authors ABS and SS contributed equally to this work.
Published:February 26, 2014DOI:https://doi.org/10.1016/j.biopsych.2014.02.011

      Background

      A deficit in impulse control is a prominent, heritable symptom in several psychiatric disorders, such as addiction, attention-deficit/hyperactivity disorder, and schizophrenia. Here, we aimed to identify genes regulating impulsivity, specifically of impulsive action, in mice.

      Methods

      Using the widely used 5-choice serial reaction time task, we measured impulsive action in 1) a panel of 41 BXD recombinant inbred strains of mice (n = 13.7 ± .8 per strain; n = 654 total) to detect underlying genetic loci; 2) congenic mice (n = 23) to replicate the identified locus; 3) mice overexpressing the Nrg3 candidate gene in the medial prefrontal cortex (n = 21); and 4) a Nrg3 loss-of-function mutant (n = 59) to functionally implicate the Nrg3 candidate gene in impulsivity.

      Results

      Genetic mapping of impulsive action in the BXD panel identified a locus on chromosome 14 (34.5–41.4 Mb), syntenic with the human 10q22-q23 schizophrenia-susceptibility locus. Congenic mice carrying the impulsivity locus (Impu1) confirmed its influence on impulsive action. Increased impulsivity was associated with increased Nrg3 gene expression in the medial prefrontal cortex (mPFC). Viral overexpression of Nrg3 in the mPFC increased impulsivity, whereas a constitutive Nrg3 loss-of-function mutation decreased it.

      Conclusions

      The causal relation between Nrg3 expression in the mPFC and level of impulsive action shown here provides a mechanism by which polymorphism in NRG3 in humans contributes to a specific cognitive deficit seen in several psychiatric diseases, such as addiction, attention-deficit/hyperactivity disorder, and schizophrenia.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      Reference

        • Winstanley C.A.
        • Eagle D.M.
        • Robbins T.W.
        Behavioral models of impulsivity in relation to ADHD: Translation between clinical and preclinical studies.
        Clin Psychol Rev. 2006; 26: 379-395
        • Lipszyc J.
        • Schachar R.
        Inhibitory control and psychopathology: A meta-analysis of studies using the stop signal task.
        J Int Neuropsychol Soc. 2010; 16: 1064-1076
        • Badcock J.C.
        • Michie P.T.
        • Johnson L.
        • Combrinck J.
        Acts of control in schizophrenia: Dissociating the components of inhibition.
        Psychol Med. 2002; 32: 287-297
        • Bidwell L.C.
        • Willcutt E.G.
        • Defries J.C.
        • Pennington B.F.
        Testing for neuropsychological endophenotypes in siblings discordant for attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2007; 62: 991-998
        • Aron A.R.
        • Poldrack R.A.
        The cognitive neuroscience of response inhibition: Relevance for genetic research in attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2005; 57: 1285-1292
        • Nolan K.A.
        • D’Angelo D.
        • Hoptman M.J.
        Self-report and laboratory measures of impulsivity in patients with schizophrenia or schizoaffective disorder and healthy controls.
        Psychiatry Res. 2011; 187: 301-303
        • Young S.E.
        • Friedman N.P.
        • Miyake A.
        • Willcutt E.G.
        • Corley R.P.
        • Haberstick B.C.
        • Hewitt J.K.
        Behavioral disinhibition: Liability for externalizing spectrum disorders and its genetic and environmental relation to response inhibition across adolescence.
        J Abnorm Psychol. 2009; 118: 117-130
        • Kuntsi J.
        • Rogers H.
        • Swinard G.
        • Borger N.
        • van der Meere J.
        • Rijsdijk F.
        • Asherson P.
        Reaction time, inhibition, working memory and ’delay aversion’ performance: Genetic influences and their interpretation.
        Psychol Med. 2006; 36: 1613-1624
        • Schachar R.J.
        • Forget-Dubois N.
        • Dionne G.
        • Boivin M.
        • Robaey P.
        Heritability of response inhibition in children.
        J Int Neuropsychol Soc. 2011; 17: 238-247
        • Stoltenberg S.F.
        • Glass J.M.
        • Chermack S.T.
        • Flynn H.A.
        • Li S.
        • Weston M.E.
        • Burmeister M.
        Possible association between response inhibition and a variant in the brain-expressed tryptophan hydroxylase-2 gene.
        Psychiatr Genet. 2006; 16: 35-38
        • Cummins T.D.
        • Hawi Z.
        • Hocking J.
        • Strudwick M.
        • Hester R.
        • Garavan H.
        • et al.
        Dopamine transporter genotype predicts behavioural and neural measures of response inhibition.
        Mol Psychiatry. 2012; 17: 1086-1092
        • Heinrich A.
        • Nees F.
        • Lourdusamy A.
        • Tzschoppe J.
        • Meier S.
        • Vollstadt-Klein S.
        • et al.
        From gene to brain to behavior: Schizophrenia-associated variation in AMBRA1 alters impulsivity-related traits.
        Eur J Neurosci. 2013; 38: 2941-2945
        • Whelan R.
        • Conrod P.J.
        • Poline J.B.
        • Lourdusamy A.
        • Banaschewski T.
        • Barker G.J.
        • et al.
        Adolescent impulsivity phenotypes characterized by distinct brain networks.
        Nat Neurosci. 2012; 15: 920-925
        • Blum K.
        • Sheridan P.J.
        • Wood R.C.
        • Braverman E.R.
        • Chen T.J.
        • Comings D.E.
        Dopamine D2 receptor gene variants: Association and linkage studies in impulsive-addictive-compulsive behaviour.
        Pharmacogenetics. 1995; 5: 121-141
        • Robbins T.W.
        The 5-choice serial reaction time task: Behavioural pharmacology and functional neurochemistry.
        Psychopharmacology (Berl). 2002; 163: 362-380
        • Pattij T.
        • Vanderschuren L.J.
        The neuropharmacology of impulsive behaviour.
        Trends Pharmacol Sci. 2008; 29: 192-199
        • Dalley J.W.
        • Mar A.C.
        • Economidou D.
        • Robbins T.W.
        Neurobehavioral mechanisms of impulsivity: Fronto-striatal systems and functional neurochemistry.
        Pharmacol Biochem Behav. 2008; 90: 250-260
        • Lambourne S.L.
        • Humby T.
        • Isles A.R.
        • Emson P.C.
        • Spillantini M.G.
        • Wilkinson L.S.
        Impairments in impulse control in mice transgenic for the human FTDP-17 tauV337M mutation are exacerbated by age.
        Hum Mol Genet. 2007; 16: 1708-1719
        • Romberg C.
        • Mattson M.P.
        • Mughal M.R.
        • Bussey T.J.
        • Saksida L.M.
        Impaired attention in the 3xTgAD mouse model of Alzheimer’s disease: Rescue by donepezil (Aricept).
        J Neurosci. 2011; 31: 3500-3507
        • Davies W.
        • Humby T.
        • Isles A.R.
        • Burgoyne P.S.
        • Wilkinson L.S.
        X-monosomy effects on visuospatial attention in mice: A candidate gene and implications for Turner syndrome and attention deficit hyperactivity disorder.
        Biol Psychiatry. 2007; 61: 1351-1360
        • Relkovic D.
        • Doe C.M.
        • Humby T.
        • Johnstone K.A.
        • Resnick J.L.
        • Holland A.J.
        • et al.
        Behavioural and cognitive abnormalities in an imprinting centre deletion mouse model for Prader-Willi syndrome.
        Eur J Neurosci. 2010; 31: 156-164
        • Pena-Oliver Y.
        • Buchman V.L.
        • Dalley J.W.
        • Robbins T.W.
        • Schumann G.
        • Ripley T.L.
        • et al.
        Deletion of alpha-synuclein decreases impulsivity in mice.
        Genes Brain Behav. 2012; 11: 137-146
        • Krueger D.D.
        • Osterweil E.K.
        • Chen S.P.
        • Tye L.D.
        • Bear M.F.
        Cognitive dysfunction and prefrontal synaptic abnormalities in a mouse model of fragile X syndrome.
        Proc Natl Acad Sci U S A. 2011; 108: 2587-2592
        • Muir J.L.
        • Everitt B.J.
        • Robbins T.W.
        The cerebral cortex of the rat and visual attentional function: Dissociable effects of mediofrontal, cingulate, anterior dorsolateral, and parietal cortex lesions on a five-choice serial reaction time task.
        Cereb Cortex. 1996; 6: 470-481
        • Chudasama Y.
        • Passetti F.
        • Rhodes S.E.
        • Lopian D.
        • Desai A.
        • Robbins T.W.
        Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: Differential effects on selectivity, impulsivity and compulsivity.
        Behav Brain Res. 2003; 146: 105-119
        • Peirce J.L.
        • Lu L.
        • Gu J.
        • Silver L.M.
        • Williams R.W.
        A new set of BXD recombinant inbred lines from advanced intercross populations in mice.
        BMC Genet. 2004; 5: 7
        • Loos M.
        • van der Sluis S.
        • Bochdanovits Z.
        • van Zutphen I.J.
        • Pattij T.
        • Stiedl O.
        • et al.
        Activity and impulsive action are controlled by different genetic and environmental factors.
        Genes Brain Behav. 2009; 8: 817-828
        • Pattij T.
        • Janssen M.C.
        • Loos M.
        • Smit A.B.
        • Schoffelmeer A.N.
        • van Gaalen M.M.
        Strain specificity and cholinergic modulation of visuospatial attention in three inbred mouse strains.
        Genes Brain Behav. 2007; 6: 579-587
        • Loos M.
        • Staal J.
        • Schoffelmeer A.N.
        • Smit A.B.
        • Spijker S.
        • Pattij T.
        Inhibitory control and response latency differences between C57BL/6J and DBA/2J mice in a Go/No-Go and 5-choice serial reaction time task and strain-specific responsivity to amphetamine.
        Behav Brain Res. 2010; 214: 216-224
        • Young J.W.
        • Light G.A.
        • Marston H.M.
        • Sharp R.
        • Geyer M.A.
        The 5-choice continuous performance test: Evidence for a translational test of vigilance for mice.
        PloS One. 2009; 4: e4227
        • Helms C.M.
        • Reeves J.M.
        • Mitchell S.H.
        Impact of strain and D-amphetamine on impulsivity (delay discounting) in inbred mice.
        Psychopharmacology (Berl). 2006; 188: 144-151
        • Laughlin R.E.
        • Grant T.L.
        • Williams R.W.
        • Jentsch J.D.
        Genetic dissection of behavioral flexibility: Reversal learning in mice.
        Biol Psychiatry. 2011; 69: 1109-1116
        • Loos M.
        • Staal J.
        • Pattij T.
        • Smit A.B.
        • Spijker S.
        Independent genetic loci for sensorimotor gating and attentional performance in BXD recombinant inbred strains.
        Genes Brain Behav. 2012; 11: 147-156
        • Zurita E.
        • Chagoyen M.
        • Cantero M.
        • Alonso R.
        • Gonzalez-Neira A.
        • Lopez-Jimenez A.
        • et al.
        Genetic polymorphisms among C57BL/6 mouse inbred strains.
        Transgenic Res. 2011; 20: 481-489
        • Ruitenberg M.J.
        • Eggers R.
        • Boer G.J.
        • Verhaagen J.
        Adeno-associated viral vectors as agents for gene delivery: Application in disorders and trauma of the central nervous system.
        Methods. 2002; 28: 182-194
        • Hermens W.T.
        • ter Brake O.
        • Dijkhuizen P.A.
        • Sonnemans M.A.
        • Grimm D.
        • Kleinschmidt J.A.
        • Verhaagen J.
        Purification of recombinant adeno-associated virus by iodixanol gradient ultracentrifugation allows rapid and reproducible preparation of vector stocks for gene transfer in the nervous system.
        Hum Gene Ther. 1999; 10: 1885-1891
        • Mason M.R.
        • Ehlert E.M.
        • Eggers R.
        • Pool C.W.
        • Hermening S.
        • Huseinovic A.
        • et al.
        Comparison of AAV serotypes for gene delivery to dorsal root ganglion neurons.
        Mol Ther. 2010; 18: 715-724
        • Paxinos G.
        • Watson C.
        The Rat Brain in Stereotaxic Coordinates.
        Academic Press, Sydney, Australia1998
        • Spijker S.
        • Houtzager S.W.
        • De Gunst M.C.
        • De Boer W.P.
        • Schoffelmeer A.N.
        • Smit A.B.
        Morphine exposure and abstinence define specific stages of gene expression in the rat nucleus accumbens.
        FASEB J. 2004; 18: 848-850
        • Watakabe A.
        • Ichinohe N.
        • Ohsawa S.
        • Hashikawa T.
        • Komatsu Y.
        • Rockland K.S.
        • Yamamori T.
        Comparative analysis of layer-specific genes in Mammalian neocortex.
        Cereb Cortex. 2007; 17: 1918-1933
        • Abe Y.
        • Nawa H.
        • Namba H.
        Activation of epidermal growth factor receptor ErbB1 attenuates inhibitory synaptic development in mouse dentate gyrus.
        Neurosci Res. 2009; 63: 138-148
        • Hegmann J.P.
        • Possidente B.
        Estimating genetic correlations from inbred strains.
        Behav Genet. 1981; 11: 103-114
        • Isles A.R.
        • Humby T.
        • Walters E.
        • Wilkinson L.S.
        Common genetic effects on variation in impulsivity and activity in mice.
        J Neurosci. 2004; 24: 6733-6740
        • Manly K.F.
        • Cudmore Jr, R.H.
        • Meer J.M.
        Map Manager QTX, cross-platform software for genetic mapping.
        Mamm Genome. 2001; 12: 930-932
        • Lander E.
        • Kruglyak L.
        Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results.
        Nat Genet. 1995; 11: 241-247
        • Fallin M.D.
        • Lasseter V.K.
        • Wolyniec P.S.
        • McGrath J.A.
        • Nestadt G.
        • Valle D.
        • et al.
        Genomewide linkage scan for schizophrenia susceptibility loci among Ashkenazi Jewish families shows evidence of linkage on chromosome 10q22.
        Am J Hum Genet. 2003; 73: 601-611
        • Faraone S.V.
        • Hwu H.G.
        • Liu C.M.
        • Chen W.J.
        • Tsuang M.M.
        • Liu S.K.
        • et al.
        Genome scan of Han Chinese schizophrenia families from Taiwan: Confirmation of linkage to 10q22.3.
        Am J Psychiatry. 2006; 163: 1760-1766
        • Balciuniene J.
        • Feng N.
        • Iyadurai K.
        • Hirsch B.
        • Charnas L.
        • Bill B.R.
        • et al.
        Recurrent 10q22-q23 deletions: A genomic disorder on 10q associated with cognitive and behavioral abnormalities.
        Am J Hum Genet. 2007; 80: 938-947
        • Sonuga-Barke E.J.
        • Lasky-Su J.
        • Neale B.M.
        • Oades R.
        • Chen W.
        • Franke B.
        • et al.
        Does parental expressed emotion moderate genetic effects in ADHD? An exploration using a genome wide association scan.
        Am J Med Genet B Neuropsychiatr Genet. 2008; 147B: 1359-1368
        • Kao W.T.
        • Wang Y.
        • Kleinman J.E.
        • Lipska B.K.
        • Hyde T.M.
        • Weinberger D.R.
        • Law A.J.
        Common genetic variation in Neuregulin 3 (NRG3) influences risk for schizophrenia and impacts NRG3 expression in human brain.
        Proc Natl Acad Sci U S A. 2010; 107: 15619-15624
        • Chen P.L.
        • Avramopoulos D.
        • Lasseter V.K.
        • McGrath J.A.
        • Fallin M.D.
        • Liang K.Y.
        • et al.
        Fine mapping on chromosome 10q22-q23 implicates Neuregulin 3 in schizophrenia.
        Am J Hum Genet. 2009; 84: 21-34
        • Morar B.
        • Dragovic M.
        • Waters F.A.
        • Chandler D.
        • Kalaydjieva L.
        • Jablensky A.
        Neuregulin 3 (NRG3) as a susceptibility gene in a schizophrenia subtype with florid delusions and relatively spared cognition.
        Mol Psychiatry. 2011; 16: 860-866
        • Meier S.
        • Strohmaier J.
        • Breuer R.
        • Mattheisen M.
        • Degenhardt F.
        • Muhleisen T.W.
        • et al.
        Neuregulin 3 is associated with attention deficits in schizophrenia and bipolar disorder.
        Int J Neuropsychopharmacol. 2013; 16: 549-556
        • Chamberlain S.R.
        • Sahakian B.J.
        The neuropsychiatry of impulsivity.
        Curr Opin Psychiatry. 2007; 20: 255-261
        • Miller E.K.
        • Cohen J.D.
        An integrative theory of prefrontal cortex function.
        Annu Rev Neurosci. 2001; 24: 167-202
        • Mei L.
        • Xiong W.C.
        Neuregulin 1 in neural development, synaptic plasticity and schizophrenia.
        Nat Rev Neurosci. 2008; 9: 437-452
        • Harding T.C.
        • Dickinson P.J.
        • Roberts B.N.
        • Yendluri S.
        • Gonzalez-Edick M.
        • Lecouteur R.A.
        • Jooss K.U.
        Enhanced gene transfer efficiency in the murine striatum and an orthotopic glioblastoma tumor model, using AAV-7- and AAV-8-pseudotyped vectors.
        Hum Gene Ther. 2006; 17: 807-820
        • Patel S.
        • Stolerman I.P.
        • Asherson P.
        • Sluyter F.
        Attentional performance of C57BL/6 and DBA/2 mice in the 5-choice serial reaction time task.
        Behav Brain Res. 2006; 170: 197-203
        • Zhang D.
        • Sliwkowski M.X.
        • Mark M.
        • Frantz G.
        • Akita R.
        • Sun Y.
        • et al.
        Neuregulin-3 (NRG3): A novel neural tissue-enriched protein that binds and activates ErbB4.
        Proc Natl Acad Sci U S A. 1997; 94: 9562-9567
        • Vullhorst D.
        • Neddens J.
        • Karavanova I.
        • Tricoire L.
        • Petralia R.S.
        • McBain C.J.
        • Buonanno A.
        Selective expression of ErbB4 in interneurons, but not pyramidal cells, of the rodent hippocampus.
        J Neurosci. 2009; 29: 12255-12264
        • Ahrens W.H.
        • Cox D.J.
        • Budhwar G.
        Use of arcsine and square root transformations for subjectively determined percentage data.
        Weed Science. 1990; 38: 452-458