Advertisement

From Psychiatric Disorders to Animal Models: A Bidirectional and Dimensional Approach

  • Zoe R. Donaldson
    Affiliations
    Departments of Psychiatry and Neuroscience, Columbia University, and Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York
    Search for articles by this author
  • René Hen
    Correspondence
    Address correspondence to René Hen, Ph.D., 1051 Riverside Drive, Unit 87, New York, NY 10032
    Affiliations
    Departments of Psychiatry and Neuroscience, Columbia University, and Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York
    Search for articles by this author
Published:February 19, 2014DOI:https://doi.org/10.1016/j.biopsych.2014.02.004

      Abstract

      Psychiatric genetics research is bidirectional in nature, with human and animal studies becoming more closely integrated as techniques for genetic manipulations allow for more subtle exploration of disease phenotypes. This synergy highlights the importance of considering the way in which we approach the genotype-phenotype relationship. In particular, the nosologic divide of psychiatric illness, although clinically relevant, is not directly translatable in animal models. For instance, mice will never fully recapitulate the broad criteria for many psychiatric disorders; additionally, mice will never have guilty ruminations, suicidal thoughts, or rapid speech. Instead, animal models have been and continue to provide a means to explore dimensions of psychiatric disorders to identify neural circuits and mechanisms underlying disease-relevant phenotypes. The genetic investigation of psychiatric illness can yield the greatest insights if efforts continue to identify and use biologically valid phenotypes across species. This review discusses the progress to date and the future efforts that will enhance translation between human and animal studies, including the identification of intermediate phenotypes that can be studied across species and the importance of refined modeling of human disease–associated genetic variation in mice and other animal models.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Insel T.R.
        The challenge of translation in social neuroscience: A review of oxytocin, vasopressin, and affiliative behavior.
        Neuron. 2010; 65: 768-779
        • Donaldson Z.R.
        • Young L.J.
        Oxytocin, vasopressin, and the neurogenetics of sociality.
        Science. 2008; 322: 900-904
        • Bielsky I.F.
        • Hu S.B.
        • Szegda K.L.
        • Westphal H.
        • Young L.J.
        Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice.
        Neuropsychopharmacology. 2004; 29: 483-493
        • Ferguson J.N.
        • Young L.J.
        • Hearn E.F.
        • Matzuk M.M.
        • Insel T.R.
        • Winslow J.T.
        Social amnesia in mice lacking the oxytocin gene.
        Nat Genet. 2000; 25: 284-288
        • Lim M.M.
        • Young L.J.
        Neuropeptidergic regulation of affiliative behavior and social bonding in animals.
        Horm Behav. 2006; 50: 506-517
        • Dolen G.
        • Darvishzadeh A.
        • Huang K.W.
        • Malenka R.C.
        Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin.
        Nature. 2013; 501: 179-184
        • Meyer-Lindenberg A.
        • Domes G.
        • Kirsch P.
        • Heinrichs M.
        Oxytocin and vasopressin in the human brain: Social neuropeptides for translational medicine.
        Nat Rev Neurosci. 2011; 12: 524-538
        • Ebstein R.P.
        • Knafo A.
        • Mankuta D.
        • Chew S.H.
        • Lai P.S.
        The contributions of oxytocin and vasopressin pathway genes to human behavior.
        Horm Behav. 2012; 61: 359-379
        • Striepens N.
        • Kendrick K.M.
        • Maier W.
        • Hurlemann R.
        Prosocial effects of oxytocin and clinical evidence for its therapeutic potential.
        Front Neuroendocrinol. 2011; 32: 426-450
        • Domes G.
        • Heinrichs M.
        • Michel A.
        • Berger C.
        • Herpertz S.C.
        Oxytocin improves “mind-reading” in humans.
        Biol Psychiatry. 2007; 61: 731-733
        • Baumgartner T.
        • Heinrichs M.
        • Vonlanthen A.
        • Fischbacher U.
        • Fehr E.
        Oxytocin shapes the neural circuitry of trust and trust adaptation in humans.
        Neuron. 2008; 58: 639-650
        • Kosfeld M.
        • Heinrichs M.
        • Zak P.J.
        • Fischbacher U.
        • Fehr E.
        Oxytocin increases trust in humans.
        Nature. 2005; 435: 673-676
        • Bakermans-Kranenburg M.J.
        • van Ijzendoorn M.H.
        Oxytocin receptor (OXTR) and serotonin transporter (5-HTT) genes associated with observed parenting.
        Social Cogn Affect Neurosci. 2008; 3: 128-134
        • Tost H.
        • Kolachana B.
        • Hakimi S.
        • Lemaitre H.
        • Verchinski B.A.
        • Mattay V.S.
        • et al.
        A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function.
        Proc Natl Acad Sci U S A. 2010; 107: 13936-13941
        • Walum H.
        • Westberg L.
        • Henningsson S.
        • Neiderhiser J.M.
        • Reiss D.
        • Igl W.
        • et al.
        Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair-bonding behavior in humans.
        Proc Natl Acad Sci U S A. 2008; 105: 14153-14156
        • Bevilacqua L.
        • Doly S.
        • Kaprio J.
        • Yuan Q.
        • Tikkanen R.
        • Paunio T.
        • et al.
        A population-specific HTR2B stop codon predisposes to severe impulsivity.
        Nature. 2010; 468: 1061-1066
        • Engle S.J.
        • Womer D.E.
        • Davies P.M.
        • Boivin G.
        • Sahota A.
        • Simmonds H.A.
        • et al.
        HPRT-APRT-deficient mice are not a model for Lesch-Nyhan syndrome.
        Hum Mol Genet. 1996; 5: 1607-1610
        • Finger S.
        • Heavens R.P.
        • Sirinathsinghji D.J.
        • Kuehn M.R.
        • Dunnett S.B.
        Behavioral and neurochemical evaluation of a transgenic mouse model of Lesch-Nyhan syndrome.
        J Neurol Sci. 1988; 86: 203-213
        • Keebaugh A.C.
        • Sullivan R.T.
        • Thomas J.W.
        Gene duplication and inactivation in the HPRT gene family.
        Genomics. 2007; 89: 134-142
        • Keebaugh A.C.
        • Mitchell H.A.
        • Gaval-Cruz M.
        • Freeman K.G.
        • Edwards G.L.
        • Weinshenker D.
        • et al.
        PRTFDC1 is a genetic modifier of HPRT-deficiency in the mouse.
        PLoS One. 2011; 6: e22381
        • American Psychiatric Association AP
        Diagnostic and Statistical Manual of Mental Disorders.
        5th ed. APA, Arlington, VA2013
        • Smoller J.W.
        • Craddock N.
        • Kendler K.
        • Lee P.H.
        • Neale B.M.
        • Nurnberger J.I.
        • et al.
        Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis.
        Lancet. 2013; 381: 1371-1379
        • Cotsapas C.
        • Voight B.F.
        • Rossin E.
        • Lage K.
        • Neale B.M.
        • Wallace C.
        • et al.
        Pervasive sharing of genetic effects in autoimmune disease.
        PLoS Genet. 2011; 7: e1002254
        • Zhernakova A.
        • Stahl E.A.
        • Trynka G.
        • Raychaudhuri S.
        • Festen E.A.
        • Franke L.
        • et al.
        Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci.
        PLoS Genet. 2011; 7: e1002004
        • Gottesman I.I.
        • Shields J.
        A polygenic theory of schizophrenia.
        Proc Natl Acad Sci U S A. 1967; 58: 199-205
        • Gottesman I.I.
        • Gould T.D.
        The endophenotype concept in psychiatry: Etymology and strategic intentions.
        Am J Psychiatry. 2003; 160: 636-645
        • Cuthbert B.N.
        • Insel T.R.
        Toward the future of psychiatric diagnosis: the seven pillars of RDoC.
        BMC Med. 2013; 11: 126
        • Insel T.
        • Cuthbert B.
        • Garvey M.
        • Heinssen R.
        • Pine D.S.
        • Quinn K.
        • et al.
        Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders.
        Am J Psychiatry. 2010; 167: 748-751
        • Leutgeb J.K.
        • Leutgeb S.
        • Moser M.B.
        • Moser E.I.
        Pattern separation in the dentate gyrus and CA3 of the hippocampus.
        Science (New York, NY). 2007; 315: 961-966
        • Treves A.
        • Tashiro A.
        • Witter M.E.
        • Moser E.I.
        What is the mammalian dentate gyrus good for?.
        Neuroscience. 2008; 154: 1155-1172
        • Gilbert P.E.
        • Kesner R.P.
        • Lee I.
        Dissociating hippocampal subregions: Double dissociation between dentate gyrus and CA1.
        Hippocampus. 2001; 11: 626-636
        • McHugh T.J.
        • Jones M.W.
        • Quinn J.J.
        • Balthasar N.
        • Coppari R.
        • Elmquist J.K.
        • et al.
        Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network.
        Science. 2007; 317: 94-99
        • Bakker A.
        • Kirwan C.B.
        • Miller M.
        • Stark C.E.
        Pattern separation in the human hippocampal CA3 and dentate gyrus.
        Science. 2008; 319: 1640-1642
        • Lacy J.W.
        • Yassa M.A.
        • Stark S.M.
        • Muftuler L.T.
        • Stark C.E.
        Distinct pattern separation related transfer functions in human CA3/dentate and CA1 revealed using high-resolution fMRI and variable mnemonic similarity.
        Learn Mem. 2010; 18: 15-18
        • Marr D.
        Simple memory: A theory for archicortex.
        Philos Trans R Soc Lond B Biol Sci. 1971; 262: 23-81
        • Lissek S.
        • Rabin S.
        • Heller R.E.
        • Lukenbaugh D.
        • Geraci M.
        • Pine D.S.
        • et al.
        Overgeneralization of conditioned fear as a pathogenic marker of panic disorder.
        Am J Psychiatry. 2010; 167: 47-55
        • Peri T.
        • Ben-Shakhar G.
        • Orr S.P.
        • Shalev A.Y.
        Psychophysiologic assessment of aversive conditioning in posttraumatic stress disorder.
        Biol Psychiatry. 2000; 47: 512-519
        • Kheirbek M.A.
        • Klemenhagen K.C.
        • Sahay A.
        • Hen R.
        Neurogenesis and generalization: A new approach to stratify and treat anxiety disorders.
        Nat Neurosci. 2012; 15: 1613-1620
        • Sahay A.
        • Scobie K.N.
        • Hill A.S.
        • O’Carroll C.M.
        • Kheirbek M.A.
        • Burghardt N.S.
        • et al.
        Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation.
        Nature. 2011; 472: 466-470
        • Sahay A.
        • Wilson D.A.
        • Hen R.
        Pattern separation: A common function for new neurons in hippocampus and olfactory bulb.
        Neuron. 2011; 70: 582-588
        • Scharinger C.
        • Rabl U.
        • Pezawas L.
        • Kasper S.
        The genetic blueprint of major depressive disorder: Contributions of imaging genetics studies.
        World J Biol Psychiatry. 2011; 12: 474-488
        • Munafo M.R.
        • Brown S.M.
        • Hariri A.R.
        Serotonin transporter (5-HTTLPR) genotype and amygdala activation: A meta-analysis.
        Biol Psychiatry. 2008; 63: 852-857
        • Munafo M.R.
        • Freimer N.B.
        • Ng W.
        • Ophoff R.
        • Veijola J.
        • Miettunen J.
        • et al.
        5-HTTLPR genotype and anxiety-related personality traits: a meta-analysis and new data.
        Am J Med Genet B Neuropsychiatr Genet. 2009; 150B: 271-281
        • Serretti A.
        • Kato M.
        • De Ronchi D.
        • Kinoshita T.
        Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with selective serotonin reuptake inhibitor efficacy in depressed patients.
        Mol Psychiatry. 2007; 12: 247-257
        • Karg K.
        • Burmeister M.
        • Shedden K.
        • Sen S.
        The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: evidence of genetic moderation.
        Arch Gen Psychiatry. 2011; 68: 444-454
        • Risch N.
        • Herrell R.
        • Lehner T.
        • Liang K.Y.
        • Eaves L.
        • Hoh J.
        • et al.
        Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: A meta-analysis.
        JAMA. 2009; 301: 2462-2471
        • Niitsu T.
        • Fabbri C.
        • Bentini F.
        • Serretti A.
        Pharmacogenetics in major depression: A comprehensive meta-analysis.
        Prog Neuropsychopharmacol Biol Psychiatry. 2013; 45: 183-194
        • Clarke H.
        • Flint J.
        • Attwood A.S.
        • Munafo M.R.
        Association of the 5-HTTLPR genotype and unipolar depression: A meta-analysis.
        Psychol Med. 2010; 40: 1767-1778
        • Bielsky I.F.
        • Young L.J.
        Oxytocin, vasopressin, and social recognition in mammals.
        Peptides. 2004; 25: 1565-1574
        • Skuse D.H.
        • Lori A.
        • Cubells J.F.
        • Lee I.
        • Conneely K.N.
        • Puura K.
        • et al.
        Common polymorphism in the oxytocin receptor gene (OXTR) is associated with human social recognition skills.
        Proc Natl Acad Sci U S A. 2014; 111: 1987-1992
        • Bourin M.
        • Colombel M.C.
        • Redrobe J.P.
        • Nizard J.
        • Hascoet M.
        • Baker G.B.
        Evaluation of efficacies of different classes of antidepressants in the forced swimming test in mice at different ages.
        Prog Neuropsychopharmacol Biol Psychiatry. 1998; 22: 343-351
        • David D.J.
        • Samuels B.A.
        • Rainer Q.
        • Wang J.W.
        • Marsteller D.
        • Mendez I.
        • et al.
        Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression.
        Neuron. 2009; 62: 479-493
        • Inder W.J.
        • Prickett T.C.
        • Mulder R.T.
        • Donald R.A.
        • Joyce P.R.
        Reduction in basal afternoon plasma ACTH during early treatment of depression with fluoxetine.
        Psychopharmacology (Berl). 2001; 156: 73-78
        • Jensen J.B.
        • Jessop D.S.
        • Harbuz M.S.
        • Mork A.
        • Sanchez C.
        • Mikkelsen J.D.
        Acute and long-term treatments with the selective serotonin reuptake inhibitor citalopram modulate the HPA axis activity at different levels in male rats.
        J Neuroendocrinol. 1999; 11: 465-471
        • Stark S.M.
        • Yassa M.A.
        • Lacy J.W.
        • Stark C.E.
        A task to assess behavioral pattern separation (BPS) in humans: Data from healthy aging and mild cognitive impairment.
        Neuropsychologia. 2013; 51: 2442-2449
        • Sierra A.
        • Encinas J.M.
        • Maletic-Savatic M.
        Adult human neurogenesis: From microscopy to magnetic resonance imaging.
        Front Neurosci. 2011; 5: 47
        • Autry A.E.
        • Monteggia L.M.
        Brain-derived neurotrophic factor and neuropsychiatric disorders.
        Pharmacol Rev. 2012; 64: 238-258
        • Duman R.S.
        • Monteggia L.M.
        A neurotrophic model for stress-related mood disorders.
        Biol Psychiatry. 2006; 59: 1116-1127
        • Hashimoto K.
        • Shimizu E.
        • Iyo M.
        Critical role of brain-derived neurotrophic factor in mood disorders.
        Brain Res Brain Res Rev. 2004; 45: 104-114
        • Molendijk M.L.
        • Bus B.A.
        • Spinhoven P.
        • Kaimatzoglou A.
        • Oude Voshaar R.C.
        • Penninx B.W.
        • et al.
        A systematic review and meta-analysis on the association between BDNF val(66)met and hippocampal volume—a genuine effect or a winners curse?.
        Am J Med Genet B Neuropsychiatr Genet. 2012; 159B: 731-740
        • Fu C.H.
        • Steiner H.
        • Costafreda S.G.
        Predictive neural biomarkers of clinical response in depression: A meta-analysis of functional and structural neuroimaging studies of pharmacological and psychological therapies.
        Neurobiol Dis. 2013; 52: 75-83
        • Castren E.
        Neurotrophic effects of antidepressant drugs.
        Curr Opin Pharmacol. 2004; 4: 58-64
        • Sahay A.
        • Hen R.
        Adult hippocampal neurogenesis in depression.
        Nat Neurosci. 2007; 10: 1110-1115
        • Schmidt H.D.
        • Duman R.S.
        The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior.
        Behav Pharmacol. 2007; 18: 391-418
        • Bremner J.D.
        • Narayan M.
        • Anderson E.R.
        • Staib L.H.
        • Miller H.L.
        • Charney D.S.
        Hippocampal volume reduction in major depression.
        Am J Psychiatry. 2000; 157: 115-118
        • Campbell S.
        • Marriott M.
        • Nahmias C.
        • MacQueen G.M.
        Lower hippocampal volume in patients suffering from depression: A meta-analysis.
        Am J Psychiatry. 2004; 161: 598-607
        • Smith M.E.
        Bilateral hippocampal volume reduction in adults with post-traumatic stress disorder: A meta-analysis of structural MRI studies.
        Hippocampus. 2005; 15: 798-807
        • Adriano F.
        • Caltagirone C.
        • Spalletta G.
        Hippocampal volume reduction in first-episode and chronic schizophrenia: A review and meta-analysis.
        Neuroscientist. 2012; 18: 180-200
        • Chen Z.Y.
        • Jing D.
        • Bath K.G.
        • Ieraci A.
        • Khan T.
        • Siao C.J.
        • et al.
        Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior.
        Science. 2006; 314: 140-143
        • Anastasia A.
        • Deinhardt K.
        • Chao M.V.
        • Will N.E.
        • Irmady K.
        • Lee F.S.
        • et al.
        Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction.
        Nat Commun. 2013; 4: 2490
        • Soliman F.
        • Glatt C.E.
        • Bath K.G.
        • Levita L.
        • Jones R.M.
        • Pattwell S.S.
        • et al.
        A genetic variant BDNF polymorphism alters extinction learning in both mouse and human.
        Science. 2010; 327: 863-866
        • Pattwell S.S.
        • Bath K.G.
        • Perez-Castro R.
        • Lee F.S.
        • Chao M.V.
        • Ninan I.
        The BDNF Val66Met polymorphism impairs synaptic transmission and plasticity in the infralimbic medial prefrontal cortex.
        J Neurosci. 2012; 32: 2410-2421
        • Bath K.G.
        • Jing D.Q.
        • Dincheva I.
        • Neeb C.C.
        • Pattwell S.S.
        • Chao M.V.
        • et al.
        BDNF Val66Met impairs fluoxetine-induced enhancement of adult hippocampus plasticity.
        Neuropsychopharmacology. 2012; 37: 1297-1304
        • Veenstra-VanderWeele J.
        • Muller C.L.
        • Iwamoto H.
        • Sauer J.E.
        • Owens W.A.
        • Shah C.R.
        • et al.
        Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior.
        Proc Natl Acad Sci U S A. 2012; 109: 5469-5474
        • Heils A.
        • Mossner R.
        • Lesch K.P.
        The human serotonin transporter gene polymorphism—basic research and clinical implications.
        J Neural Transm. 1997; 104: 1005-1014
        • Caspi A.
        • Sugden K.
        • Moffitt T.E.
        • Taylor A.
        • Craig I.W.
        • Harrington H.
        • et al.
        Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene.
        Science. 2003; 301: 386-389
        • Barr C.S.
        • Newman T.K.
        • Lindell S.
        • Shannon C.
        • Champoux M.
        • Lesch K.P.
        • et al.
        Interaction between serotonin transporter gene variation and rearing condition in alcohol preference and consumption in female primates.
        Arch Gen Psychiatry. 2004; 61: 1146-1152
        • Lesch K.P.
        • Meyer J.
        • Glatz K.
        • Flugge G.
        • Hinney A.
        • Hebebrand J.
        • et al.
        The 5-HT transporter gene-linked polymorphic region (5-HTTLPR) in evolutionary perspective: Alternative biallelic variation in rhesus monkeys.
        J Neural Transm. 1997; 104: 1259-1266
        • Heiming R.S.
        • Bodden C.
        • Jansen F.
        • Lewejohann L.
        • Kaiser S.
        • Lesch K.P.
        • et al.
        Living in a dangerous world decreases maternal care: A study in serotonin transporter knockout mice.
        Horm Behav. 2011; 60: 397-407
        • Carola V.
        • Gross C.
        Mouse models of the 5-HTTLPR x stress risk factor for depression.
        Curr Top Behav Neurosci. 2012; 12: 59-72
        • Ramboz S.
        • Oosting R.
        • Amara D.A.
        • Kung H.F.
        • Blier P.
        • Mendelsohn M.
        • et al.
        Serotonin receptor 1A knockout: An animal model of anxiety-related disorder.
        Proc Natl Acad Sci U S A. 1998; 95: 14476-14481
        • Santarelli L.
        • Saxe M.
        • Gross C.
        • Surget A.
        • Battaglia F.
        • Dulawa S.
        • et al.
        Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants.
        Science. 2003; 301: 805-809
        • Donaldson Z.R.
        • Piel D.A.
        • Santos T.L.
        • Richardson-Jones J.
        • Leonardo E.D.
        • Beck S.G.
        • et al.
        Developmental effects of serotonin 1A autoreceptors on anxiety and social behavior.
        Neuropsychopharmacology. 2014; 39: 291-302
        • Richardson-Jones J.W.
        • Craige C.P.
        • Guiard B.P.
        • Stephen A.
        • Metzger K.L.
        • Kung H.F.
        • et al.
        5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants.
        Neuron. 2010; 65: 40-52
        • Bortolozzi A.
        • Castane A.
        • Semakova J.
        • Santana N.
        • Alvarado G.
        • Cortes R.
        • et al.
        New antidepressant strategy based on acute siRNA silencing of 5-HT1A autoreceptors.
        Mol Psychiatry. 2012; 17: 567
        • Albert P.R.
        Transcriptional regulation of the 5-HT1A receptor: Implications for mental illness.
        Philos Trans R Soc Lond B Biol Sci. 2012; 367: 2402-2415
        • Lemonde S.
        • Turecki G.
        • Bakish D.
        • Du L.
        • Hrdina P.D.
        • Bown C.D.
        • et al.
        Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide.
        J Neurosci. 2003; 23: 8788-8799
        • Parsey R.V.
        • Ogden R.T.
        • Miller J.M.
        • Tin A.
        • Hesselgrave N.
        • Goldstein E.
        • et al.
        Higher serotonin 1A binding in a second major depression cohort: Modeling and reference region considerations.
        Biol Psychiatry. 2010; 68: 170-178