Advertisement

Loss of Morphine Reward and Dependence in Mice Lacking G Protein–Coupled Receptor Kinase 5

Published:February 05, 2014DOI:https://doi.org/10.1016/j.biopsych.2014.01.021

      Background

      The clinical benefits of opioid drugs are counteracted by the development of tolerance and addiction. We provide in vivo evidence for the involvement of G protein–coupled receptor kinases (GRKs) in opioid dependence in addition to their roles in agonist-selective mu-opioid receptor (MOR) phosphorylation.

      Methods

      In vivo MOR phosphorylation was examined by immunoprecipitation and nanoflow liquid chromatography–tandem mass spectrometry analysis. Using the hot-plate and conditioned place preference test, we investigated opioid-related antinociception and reward effects in mice lacking GRK3 or GRK5.

      Results

      Etonitazene and fentanyl stimulated the in vivo phosphorylation of multiple carboxyl-terminal phosphate acceptor sites, including threonine 370, serine 375, and threonine 379, which was predominantly mediated by GRK3. By contrast, morphine promoted a selective phosphorylation of serine 375 that was predominantly mediated by GRK5. In contrast to GRK3 knockout mice, GRK5 knockout mice exhibited reduced antinociceptive responses after morphine administration and developed morphine tolerance similar to wild-type mice but fewer signs of physical dependence. Also, morphine was ineffective in inducing conditioned place preference in GRK5 knockout mice, whereas cocaine conditioned place preference was retained. However, the reward properties of morphine were evident in knock-in mice expressing a phosphorylation-deficient S375A mutation of the MOR.

      Conclusions

      These findings show for the first time that MOR phosphorylation is regulated by agonist-selective recruitment of distinct GRK isoforms that influence different opioid-related behaviors. Modulation of GRK5 function could serve as a new approach for preventing addiction to opioids, while maintaining the analgesic properties of opioid drugs at an effective level.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Matthes H.W.
        • Maldonado R.
        • Simonin F.
        • Valverde O.
        • Slowe S.
        • Kitchen I.
        • et al.
        Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene.
        Nature. 1996; 383: 819-823
        • Connor M.
        • Osborne P.B.
        • Christie M.J.
        Mu-opioid receptor desensitization: Is morphine different?.
        Br J Pharmacol. 2004; 143: 685-696
        • Koch T.
        • Hollt V.
        Role of receptor internalization in opioid tolerance and dependence.
        Pharmacol Ther. 2008; 117: 199-206
        • Doll C.
        • Konietzko J.
        • Poll F.
        • Koch T.
        • Hollt V.
        • Schulz S.
        Agonist-selective patterns of micro-opioid receptor phosphorylation revealed by phosphosite-specific antibodies.
        Br J Pharmacol. 2011; 164: 298-307
        • Just S.
        • Illing S.
        • Trester-Zedlitz M.
        • Lau E.K.
        • Kotowski S.J.
        • Miess E.
        • et al.
        Differentiation of opioid drug effects by hierarchical multi-site phosphorylation.
        Mol Pharmacol. 2013; 83: 633-639
        • Doll C.
        • Poll F.
        • Peuker K.
        • Loktev A.
        • Gluck L.
        • Schulz S.
        Deciphering micro-opioid receptor phosphorylation and dephosphorylation in HEK293 cells.
        Br J Pharmacol. 2012; 167: 1259-1270
        • Schulz S.
        • Mayer D.
        • Pfeiffer M.
        • Stumm R.
        • Koch T.
        • Hollt V.
        Morphine induces terminal micro-opioid receptor desensitization by sustained phosphorylation of serine-375.
        EMBO J. 2004; 23: 3282-3289
        • McPherson J.
        • Rivero G.
        • Baptist M.
        • Llorente J.
        • Al-Sabah S.
        • Krasel C.
        • et al.
        Mu-opioid receptors: Correlation of agonist efficacy for signalling with ability to activate internalization.
        Mol Pharmacol. 2010; 78: 756-766
        • Premont R.T.
        • Gainetdinov R.R.
        Physiological roles of G protein-coupled receptor kinases and arrestins.
        Annu Rev Physiol. 2007; 69: 511-534
        • Gainetdinov R.R.
        • Premont R.T.
        • Caron M.G.
        • Lefkowitz R.J.
        Receptor specificity of G-protein-coupled receptor kinases.
        Trends Pharmacol Sci. 2000; 21: 366-367
        • Loudon R.P.
        • Perussia B.
        • Benovic J.L.
        Differentially regulated expression of the G-protein-coupled receptor kinases, betaARK and GRK6, during myelomonocytic cell development in vitro.
        Blood. 1996; 88: 4547-4557
        • Schleicher S.
        • Boekhoff I.
        • Arriza J.
        • Lefkowitz R.J.
        • Breer H.
        A beta-adrenergic receptor kinase-like enzyme is involved in olfactory signal termination.
        Proc Natl Acad Sci U S A. 1993; 90: 1420-1424
        • Premont R.T.
        • Macrae A.D.
        • Stoffel R.H.
        • Chung N.
        • Pitcher J.A.
        • Ambrose C.
        • et al.
        Characterization of the G protein-coupled receptor kinase GRK4. Identification of four splice variants.
        J Biol Chem. 1996; 271: 6403-6410
        • Sallese M.
        • Mariggio S.
        • Collodel G.
        • Moretti E.
        • Piomboni P.
        • Baccetti B.
        • et al.
        G protein-coupled receptor kinase GRK4. Molecular analysis of the four isoforms and ultrastructural localization in spermatozoa and germinal cells.
        J Biol Chem. 1997; 272: 10188-10195
        • Terman G.W.
        • Jin W.
        • Cheong Y.P.
        • Lowe J.
        • Caron M.G.
        • Lefkowitz R.J.
        • et al.
        G-protein receptor kinase 3 (GRK3) influences opioid analgesic tolerance but not opioid withdrawal.
        Br J Pharmacol. 2004; 141: 55-64
        • Melief E.J.
        • Miyatake M.
        • Bruchas M.R.
        • Chavkin C.
        Ligand-directed c-Jun N-terminal kinase activation disrupts opioid receptor signaling.
        Proc Natl Acad Sci U S A. 2010; 107: 11608-11613
        • Raehal K.M.
        • Schmid C.L.
        • Medvedev I.O.
        • Gainetdinov R.R.
        • Premont R.T.
        • Bohn L.M.
        Morphine-induced physiological and behavioral responses in mice lacking G protein-coupled receptor kinase 6.
        Drug Alcohol Depend. 2009; 104: 187-196
        • Lupp A.
        • Richter N.
        • Doll C.
        • Nagel F.
        • Schulz S.
        UMB-3, a novel rabbit monoclonal antibody, for assessing mu-opioid receptor expression in mouse, rat and human formalin-fixed and paraffin-embedded tissues.
        Regul Pept. 2011; 167: 9-13
        • Grecksch G.
        • Just S.
        • Pierstorff C.
        • Imhof A.K.
        • Gluck L.
        • Doll C.
        • et al.
        Analgesic tolerance to high-efficacy agonists but not to morphine is diminished in phosphorylation-deficient S375A mu-opioid receptor knock-in mice.
        J Neurosci. 2011; 31: 13890-13896
        • Busillo J.M.
        • Armando S.
        • Sengupta R.
        • Meucci O.
        • Bouvier M.
        • Benovic J.L.
        Site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases and results in differential modulation of CXCR4 signaling.
        J Biol Chem. 2010; 285: 7805-7817
        • Kilkenny C.
        • Browne W.
        • Cuthill I.C.
        • Emerson M.
        • Altman D.G.
        • NC3Rs Reporting Guidelines Working Group
        Animal research: Reporting in vivo experiments: The ARRIVE guidelines.
        Br J Pharmacol. 2010; 160: 1577-1579
        • McGrath J.C.
        • Drummond G.B.
        • McLachlan E.M.
        • Kilkenny C.
        • Wainwright C.L.
        Guidelines for reporting experiments involving animals: The ARRIVE guidelines.
        Br J Pharmacol. 2010; 160: 1573-1576
        • Maldonado R.
        • Saiardi A.
        • Valverde O.
        • Samad T.A.
        • Roques B.P.
        • Borrelli E.
        Absence of opiate rewarding effects in mice lacking dopamine D2 receptors.
        Nature. 1997; 388: 586-589
        • Reiter E.
        • Ahn S.
        • Shukla A.K.
        • Lefkowitz R.J.
        Molecular mechanism of beta-arrestin-biased agonism at seven-transmembrane receptors.
        Annu Rev Pharmacol Toxicol. 2012; 52: 179-197
        • Ren X.R.
        • Reiter E.
        • Ahn S.
        • Kim J.
        • Chen W.
        • Lefkowitz R.J.
        Different G protein-coupled receptor kinases govern G protein and beta-arrestin-mediated signaling of V2 vasopressin receptor.
        Proc Natl Acad Sci U S A. 2005; 102: 1448-1453
        • Kim J.
        • Ahn S.
        • Ren X.R.
        • Whalen E.J.
        • Reiter E.
        • Wei H.
        • et al.
        Functional antagonism of different G protein-coupled receptor kinases for beta-arrestin-mediated angiotensin II receptor signaling.
        Proc Natl Acad Sci U S A. 2005; 102: 1442-1447
        • Kara E.
        • Crepieux P.
        • Gauthier C.
        • Martinat N.
        • Piketty V.
        • Guillou F.
        • et al.
        A phosphorylation cluster of five serine and threonine residues in the C-terminus of the follicle-stimulating hormone receptor is important for desensitization but not for beta-arrestin-mediated ERK activation.
        Mol Endocrinol. 2006; 20: 3014-3026
        • Reiter E.
        • Lefkowitz R.J.
        GRKs and beta-arrestins: Roles in receptor silencing, trafficking and signaling.
        Trends Endocrinol Metab. 2006; 17: 159-165
        • Shenoy S.K.
        • Drake M.T.
        • Nelson C.D.
        • Houtz D.A.
        • Xiao K.
        • Madabushi S.
        • et al.
        Beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor.
        J Biol Chem. 2006; 281: 1261-1273
        • Butcher A.J.
        • Prihandoko R.
        • Kong K.C.
        • McWilliams P.
        • Edwards J.M.
        • Bottrill A.
        • et al.
        Differential G-protein-coupled receptor phosphorylation provides evidence for a signaling bar code.
        J Biol Chem. 2011; 286: 11506-11518
        • Nobles K.N.
        • Xiao K.
        • Ahn S.
        • Shukla A.K.
        • Lam C.M.
        • Rajagopal S.
        • et al.
        Distinct phosphorylation sites on the beta(2)-adrenergic receptor establish a barcode that encodes differential functions of beta-arrestin.
        Sci Signal. 2011; (4:ra51)
        • Heitzler D.
        • Durand G.
        • Gallay N.
        • Rizk A.
        • Ahn S.
        • Kim J.
        • et al.
        Competing G protein-coupled receptor kinases balance G protein and beta-arrestin signaling.
        Mol Syst Biol. 2012; 8: 590
        • Gainetdinov R.R.
        • Bohn L.M.
        • Walker J.K.
        • Laporte S.A.
        • Macrae A.D.
        • Caron M.G.
        • et al.
        Muscarinic supersensitivity and impaired receptor desensitization in G protein-coupled receptor kinase 5-deficient mice.
        Neuron. 1999; 24: 1029-1036
        • Bohn L.M.
        • Lefkowitz R.J.
        • Gainetdinov R.R.
        • Peppel K.
        • Caron M.G.
        • Lin F.T.
        Enhanced morphine analgesia in mice lacking beta-arrestin 2.
        Science. 1999; 286: 2495-2498
        • Bohn L.M.
        • Gainetdinov R.R.
        • Lin F.T.
        • Lefkowitz R.J.
        • Caron M.G.
        Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence.
        Nature. 2000; 408: 720-723
        • Bohn L.M.
        • Gainetdinov R.R.
        • Sotnikova T.D.
        • Medvedev I.O.
        • Lefkowitz R.J.
        • Dykstra L.A.
        • et al.
        Enhanced rewarding properties of morphine, but not cocaine, in beta(arrestin)-2 knock-out mice.
        J Neurosci. 2003; 23: 10265-10273
        • Raehal K.M.
        • Bohn L.M.
        The role of beta-arrestin2 in the severity of antinociceptive tolerance and physical dependence induced by different opioid pain therapeutics.
        Neuropharmacology. 2011; 60: 58-65
        • Haberstock-Debic H.
        • Wein M.
        • Barrot M.
        • Colago E.E.
        • Rahman Z.
        • Neve R.L.
        • et al.
        Morphine acutely regulates opioid receptor trafficking selectively in dendrites of nucleus accumbens neurons.
        J Neurosci. 2003; 23: 4324-4332
        • Koob G.F.
        Drugs of abuse: Anatomy, pharmacology and function of reward pathways.
        Trends Pharmacol Sci. 1992; 13: 177-184
        • Steketee J.D.
        • Sorg B.A.
        • Kalivas P.W.
        The role of the nucleus accumbens in sensitization to drugs of abuse.
        Prog Neuropsychopharmacol Biol Psychiatry. 1992; 16: 237-246
        • Lintas A.
        • Chi N.
        • Lauzon N.M.
        • Bishop S.F.
        • Gholizadeh S.
        • Sun N.
        • et al.
        Identification of a dopamine receptor-mediated opiate reward memory switch in the basolateral amygdala-nucleus accumbens circuit.
        J Neurosci. 2011; 31: 11172-11183
        • Ford C.P.
        • Mark G.P.
        • Williams J.T.
        Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location.
        J Neurosci. 2006; 26: 2788-2797
        • Chen Y.
        • Wang F.
        • Long H.
        • Chen Y.
        • Wu Z.
        • Ma L.
        GRK5 promotes F-actin bundling and targets bundles to membrane structures to control neuronal morphogenesis.
        J Cell Biol. 2011; 194: 905-920
        • Valjent E.
        • Corbille A.G.
        • Bertran-Gonzalez J.
        • Herve D.
        • Girault J.A.
        Inhibition of ERK pathway or protein synthesis during reexposure to drugs of abuse erases previously learned place preference.
        Proc Natl Acad Sci U S A. 2006; 103: 2932-2937
        • Gong Y.X.
        • Zhang W.P.
        • Shou W.T.
        • Zhong K.
        • Chen Z.
        Morphine induces conditioned place preference behavior in histidine decarboxylase knockout mice.
        Neurosci Lett. 2010; 468: 115-119
        • Bouton M.E.
        Context, time, and memory retrieval in the interference paradigms of Pavlovian learning.
        Psychol Bull. 1993; 114: 80-99
        • Miller C.A.
        • Marshall J.F.
        Molecular substrates for retrieval and reconsolidation of cocaine-associated contextual memory.
        Neuron. 2005; 47: 873-884
        • Wang W.S.
        • Kang S.
        • Liu W.T.
        • Li M.
        • Liu Y.
        • Yu C.
        • et al.
        Extinction of aversive memories associated with morphine withdrawal requires ERK-mediated epigenetic regulation of brain-derived neurotrophic factor transcription in the rat ventromedial prefrontal cortex.
        J Neurosci. 2012; 32: 13763-13775
        • Eitan S.
        • Bryant C.D.
        • Saliminejad N.
        • Yang Y.C.
        • Vojdani E.
        • Keith Jr, D.
        • et al.
        Brain region-specific mechanisms for acute morphine-induced mitogen-activated protein kinase modulation and distinct patterns of activation during analgesic tolerance and locomotor sensitization.
        J Neurosci. 2003; 23: 8360-8369
        • Valjent E.
        • Pages C.
        • Herve D.
        • Girault J.A.
        • Caboche J.
        Addictive and non-addictive drugs induce distinct and specific patterns of ERK activation in mouse brain.
        Eur J Neurosci. 2004; 19: 1826-1836
        • Macey T.A.
        • Lowe J.D.
        • Chavkin C.
        Mu opioid receptor activation of ERK1/2 is GRK3 and arrestin dependent in striatal neurons.
        J Biol Chem. 2006; 281: 34515-34524
        • West A.E.
        • Chen W.G.
        • Dalva M.B.
        • Dolmetsch R.E.
        • Kornhauser J.M.
        • Shaywitz A.J.
        • et al.
        Calcium regulation of neuronal gene expression.
        Proc Natl Acad Sci U S A. 2001; 98: 11024-11031
        • Funada M.
        • Suzuki T.
        • Narita M.
        • Misawa M.
        • Nagase H.
        Blockade of morphine reward through the activation of kappa-opioid receptors in mice.
        Neuropharmacology. 1993; 32: 1315-1323
        • Glick S.D.
        • Maisonneuve I.M.
        • Raucci J.
        • Archer S.
        Kappa opioid inhibition of morphine and cocaine self-administration in rats.
        Brain Res. 1995; 681: 147-152
        • Kuzmin A.V.
        • Semenova S.
        • Gerrits M.A.
        • Zvartau E.E.
        • Van Ree J.M.
        Kappa-opioid receptor agonist U50,488H modulates cocaine and morphine self-administration in drug-naive rats and mice.
        Eur J Pharmacol. 1997; 321: 265-271
        • Wee S.
        • Koob G.F.
        The role of the dynorphin-kappa opioid system in the reinforcing effects of drugs of abuse.
        Psychopharmacology. 2010; 210: 121-135