Advertisement

Convergence of Advances in Genomics, Team Science, and Repositories as Drivers of Progress in Psychiatric Genomics

      Abstract

      After many years of unfilled promise, psychiatric genetics has seen an unprecedented number of successes in recent years. We hypothesize that the field has reached an inflection point through a confluence of four key developments: advances in genomics; the orientation of the scientific community around large collaborative team science projects; the development of sample and data repositories; and a policy framework for sharing and accessing these resources. We discuss these domains and their effect on scientific progress and provide a perspective on why we think this is only the beginning of a new era in scientific discovery.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. A Catalog of Published Genome-Wide Association Studies. Available at: http://www.genome.gov/gwastudies/. Accessed January 28, 2014.

        • Sullivan P.F.
        • Daly M.J.
        • O’Donovan M.
        Genetic architectures of psychiatric disorders: The emerging picture and its implications.
        Nat Rev Genet. 2012; 13: 537-551
      2. NIMH Repository and Genomics Resource. Available at: https://www.nimhgenetics.org/. Accessed January 28, 2014.

      3. Database of Genotypes and Phenotypes. Available at: http://www.ncbi.nlm.nih.gov/gap. Accessed January 28, 2014.

      4. Summary of principles agreed at the International Strategy Meeting on Human Genome Sequencing, Bermuda, 25–28 February 1996. Available at http://www.ornl.gov/sci/techresources/Human_Genome/research/bermuda.shtml. Accessed January 28, 2014.

      5. Policy for Sharing of Data Obtained in NIH Supported or Conducted Genome-Wide Association Studies (GWAS). Available at: http://grants.nih.gov/grants/guide/notice-files/NOT-OD-07-088.html. Accessed January 28, 2014.

      6. Final NIH Statement on Sharing Research Data. Available at: http://grants.nih.gov/grants/guide/notice-files/NOT-OD-03-032.html. Accessed January 28, 2014.

        • Strachan T.
        • Read A.P.
        Human Molecular Genetics 3.
        3rd ed. Garland Press, London; New York2004
        • Ott J.
        Analysis of Human Genetic Linkage.
        3rd ed. The Johns Hopkins University Press, Baltimore, MD1999
        • Collins F.S.
        Positional cloning moves from perditional to traditional.
        Nat Genet. 1995; 9: 347-350
        • Consortium E.P.
        • Bernstein B.E.
        • Birney E.
        • Dunham I.
        • Green E.D.
        • Gunter C.
        • et al.
        An integrated encyclopedia of DNA elements in the human genome.
        Nature. 2012; 489: 57-74
        • Genomes Project C.
        • Abecasis G.R.
        • Auton A.
        • Brooks L.D.
        • DePristo M.A.
        • Durbin R.M.
        • et al.
        An integrated map of genetic variation from 1,092 human genomes.
        Nature. 2012; 491: 56-65
        • International HapMap C.
        • Altshuler D.M.
        • Gibbs R.A.
        • Peltonen L.
        • Altshuler D.M.
        • Gibbs R.A.
        • et al.
        Integrating common and rare genetic variation in diverse human populations.
        Nature. 2010; 467: 52-58
        • International Human Genome Sequencing C
        Finishing the euchromatic sequence of the human genome.
        Nature. 2004; 431: 931-945
        • Lander E.S.
        • Linton L.M.
        • Birren B.
        • Nusbaum C.
        • Zody M.C.
        • Baldwin J.
        • et al.
        Initial sequencing and analysis of the human genome.
        Nature. 2001; 409: 860-921
        • Venter J.C.
        • Adams M.D.
        • Myers E.W.
        • Li P.W.
        • Mural R.J.
        • Sutton G.G.
        • et al.
        The sequence of the human genome.
        Science. 2001; 291: 1304-1351
        • McKenna A.
        • Hanna M.
        • Banks E.
        • Sivachenko A.
        • Cibulskis K.
        • Kernytsky A.
        • et al.
        The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data.
        Genome Res. 2010; 20: 1297-1303
        • Purcell S.
        • Neale B.
        • Todd-Brown K.
        • Thomas L.
        • Ferreira M.A.
        • Bender D.
        • et al.
        PLINK: A tool set for whole-genome association and population-based linkage analyses.
        Am J Hum Genet. 2007; 81: 559-575
        • Rosenberg N.A.
        • Huang L.
        • Jewett E.M.
        • Szpiech Z.A.
        • Jankovic I.
        • Boehnke M.
        Genome-wide association studies in diverse populations.
        Nat Rev Genet. 2010; 11: 356-366
      7. Limited Competition for Data Deposition and Analyses of Genome Wide Association Studies of Mental Disorders (R01). Available at: http://grants.nih.gov/grants/guide/rfa-files/RFA-MH-08-120.html. Accessed January 28, 2014.

      8. Recovery Act Limited Competition for NIH Grants: Research and Research Infrastructure “Grand Opportunities” (RC2) (RFA-OD-09-004). Available at: http://nimh.nih.gov/recovery/recovery-act-grand-opportunities-grants-nimh-areas.shtml. Accessed January 28, 2014.

      9. Limited Competition: Genomic Risk and Resilience in 22q11 Deletion Syndrome: A Window into the Genetic Architecture of Mental Disorders (Collaborative R01). Available at: http://grants.nih.gov/grants/guide/rfa-files/RFA-MH-13-120.html. Accessed January 28, 2014.

      10. Unveiling the Genome: Genetic Architecture of Severe Mental Disorders Revealed (Collaborative U01). Available at: http://grants.nih.gov/grants/guide/pa-files/PAR-13-241.html. Accessed January 28, 2014.

        • Psychiatric GCCC
        • Cichon S.
        • Craddock N.
        • Daly M.
        • Faraone S.V.
        • Gejman P.V.
        • et al.
        Genomewide association studies: History, rationale, and prospects for psychiatric disorders.
        Am J Psychiatry. 2009; 166: 540-556
        • Psychiatric GCSC
        A framework for interpreting genome-wide association studies of psychiatric disorders.
        Mol Psychiatry. 2009; 14: 10-17
        • Sullivan P.F.
        The psychiatric GWAS consortium: Big science comes to psychiatry.
        Neuron. 2010; 68: 182-186
        • Cross-Disorder Group of the Psychiatric Genomics C
        • Lee S.H.
        • Ripke S
        • Neale BM
        • Faraone S.V.
        • Purcell S.M.
        • et al.
        Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs.
        Nat Genet. 2013; 45: 984-994
        • Ripke S.
        • O’Dushlaine C.
        • Chambert K.
        • Moran J.L.
        • Kahler A.K.
        • Akterin S.
        • et al.
        Genome-wide association analysis identifies 13 new risk loci for schizophrenia.
        Nat Genet. 2013; 45: 1150-1159
        • Buxbaum J.D.
        • Daly M.J.
        • Devlin B.
        • Lehner T.
        • Roeder K.
        • State M.W.
        • et al.
        The autism sequencing consortium: Large-scale, high-throughput sequencing in autism spectrum disorders.
        Neuron. 2012; 76: 1052-1056
        • Neale B.M.
        • Kou Y.
        • Liu L.
        • Ma’ayan A.
        • Samocha K.E.
        • Sabo A.
        • et al.
        Patterns and rates of exonic de novo mutations in autism spectrum disorders.
        Nature. 2012; 485: 242-245
        • O’Roak B.J.
        • Vives L.
        • Girirajan S.
        • Karakoc E.
        • Krumm N.
        • Coe B.P.
        • et al.
        Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations.
        Nature. 2012; 485: 246-250
        • Sanders S.J.
        • Murtha M.T.
        • Gupta A.R.
        • Murdoch J.D.
        • Raubeson M.J.
        • Willsey A.J.
        • et al.
        De novo mutations revealed by whole-exome sequencing are strongly associated with autism.
        Nature. 2012; 485: 237-241
        • Stroup T.S.
        • McEvoy J.P.
        • Swartz M.S.
        • Byerly M.J.
        • Glick I.D.
        • Canive J.M.
        • et al.
        The National Institute of Mental Health Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) project: Schizophrenia trial design and protocol development.
        Schizophr Bull. 2003; 29: 15-31
        • Rush A.J.
        • Fava M.
        • Wisniewski S.R.
        • Lavori P.W.
        • Trivedi M.H.
        • Sackeim H.A.
        • et al.
        Sequenced treatment alternatives to relieve depression (STAR*D): Rationale and design.
        Control Clin Trials. 2004; 25: 119-142
        • Stein J.L.
        • Medland S.E.
        • Vasquez A.A.
        • Hibar D.P.
        • Senstad R.E.
        • Winkler A.M.
        • et al.
        Identification of common variants associated with human hippocampal and intracranial volumes.
        Nat Genet. 2012; 44: 552-561
        • Moldin S.O.
        NIMH Human Genetics Initiative: 2003 update.
        Am J Psychiatry. 2003; 160: 621-622
        • Steinberg S.
        • de Jong S.
        • Mattheisen M.
        • Costas J.
        • Demontis D.
        • Jamain S.
        • et al.
        Common variant at 16p11.2 conferring risk of psychosis.
        Mol Psychiatry. 2014; 19: 108-114
        • Lim E.T.
        • Raychaudhuri S.
        • Sanders S.J.
        • Stevens C.
        • Sabo A.
        • MacArthur D.G.
        • et al.
        Rare complete knockouts in humans: Population distribution and significant role in autism spectrum disorders.
        Neuron. 2013; 77: 235-242
        • Timms A.E.
        • Dorschner M.O.
        • Wechsler J.
        • Choi K.Y.
        • Kirkwood R.
        • Girirajan S.
        • et al.
        Support for the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia from exome sequencing in multiplex families.
        JAMA Psychiatry. 2013; 70: 582-590
        • Group G.C.R.
        • Manolio T.A.
        • Rodriguez L.L.
        • Brooks L.
        • Abecasis G.
        • Collaborative Association Study of P
        • et al.
        New models of collaboration in genome-wide association studies: the Genetic Association Information Network.
        Nat Genet. 2007; 39: 1045-1051
      11. Genetics and Mental Disorders. Available at: http://wwwapps.nimh.nih.gov/ecb/archives/nimhgenetics.pdf. Accessed January 28, 2014.

        • Ramos E.M.
        • Din-Lovinescu C.
        • Bookman E.B.
        • McNeil L.J.
        • Baker C.C.
        • Godynskiy G.
        • et al.
        A mechanism for controlled access to GWAS data: Experience of the GAIN Data Access Committee.
        Am J Hum Genet. 2013; 92: 479-488
        • International Schizophrenia C.
        • Purcell S.M.
        • Wray N.R.
        • Stone J.L.
        • Visscher P.M.
        • O’Donovan M.C.
        • et al.
        Common polygenic variation contributes to risk of schizophrenia and bipolar disorder.
        Nature. 2009; 460: 748-752
        • Shi J.
        • Levinson D.F.
        • Duan J.
        • Sanders A.R.
        • Zheng Y.
        • Pe’er I.
        • et al.
        Common variants on chromosome 6p22.1 are associated with schizophrenia.
        Nature. 2009; 460: 753-757
        • Stefansson H.
        • Ophoff R.A.
        • Steinberg S.
        • Andreassen O.A.
        • Cichon S.
        • Rujescu D.
        • et al.
        Common variants conferring risk of schizophrenia.
        Nature. 2009; 460: 744-747
        • de Bakker P.I.
        • Burtt N.P.
        • Graham R.R.
        • Guiducci C.
        • Yelensky R.
        • Drake J.A.
        • et al.
        Transferability of tag SNPs in genetic association studies in multiple populations.
        Nat Genet. 2006; 38: 1298-1303
        • Risch N.
        • Merikangas K.
        The future of genetic studies of complex human diseases.
        Science. 1996; 273: 1516-1517
        • Burton P.R.
        • Hansell A.L.
        • Fortier I.
        • Manolio T.A.
        • Khoury M.J.
        • Little J.
        • et al.
        Size matters: just how big is BIG?: Quantifying realistic sample size requirements for human genome epidemiology.
        Int J Epidemiol. 2009; 38: 263-273
        • Kiezun A.
        • Garimella K.
        • Do R.
        • Stitziel N.O.
        • Neale B.M.
        • McLaren P.J.
        • et al.
        Exome sequencing and the genetic basis of complex traits.
        Nat Genet. 2012; 44: 623-630
        • Schadt E.E.
        Molecular networks as sensors and drivers of common human diseases.
        Nature. 2009; 461: 218-223
        • Gulsuner S.
        • Walsh T.
        • Watts A.C.
        • Lee M.K.
        • Thornton A.M.
        • Casadei S.
        • et al.
        Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network.
        Cell. 2013; 154: 518-529
        • Parikshak N.N.
        • Luo R.
        • Zhang A.
        • Won H.
        • Lowe J.K.
        • Chandran V.
        • et al.
        Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism.
        Cell. 2013; 155: 1008-1021
        • Willsey A.J.
        • Sanders S.J.
        • Li M.
        • Dong S.
        • Tebbenkamp A.T.
        • Muhle R.A.
        • et al.
        Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism.
        Cell. 2013; 155: 997-1007
        • Pang Z.P.
        • Yang N.
        • Vierbuchen T.
        • Ostermeier A.
        • Fuentes D.R.
        • Yang T.Q.
        • et al.
        Induction of human neuronal cells by defined transcription factors.
        Nature. 2011; 476: 220-223
        • Lancaster M.A.
        • Renner M.
        • Martin C.A.
        • Wenzel D.
        • Bicknell L.S.
        • Hurles M.E.
        • et al.
        Cerebral organoids model human brain development and microcephaly.
        Nature. 2013; 501: 373-379
        • Cong L.
        • Ran F.A.
        • Cox D.
        • Lin S.
        • Barretto R.
        • Habib N.
        • et al.
        Multiplex genome engineering using CRISPR/Cas systems.
        Science. 2013; 339: 819-823
        • Wang D.G.
        • Fan J.B.
        • Siao C.J.
        • Berno A.
        • Young P.
        • Sapolsky R.
        • et al.
        Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome.
        Science. 1998; 280: 1077-1082
        • International HapMap C.
        The International HapMap Project.
        Nature. 2003; 426: 789-796
        • Bentley D.R.
        • Balasubramanian S.
        • Swerdlow H.P.
        • Smith G.P.
        • Milton J.
        • Brown C.G.
        • et al.
        Accurate whole human genome sequencing using reversible terminator chemistry.
        Nature. 2008; 456: 53-59
        • Watson J.D.
        The human genome project: Past, present, and future.
        Science. 1990; 248: 44-49
        • Sebat J.
        • Lakshmi B.
        • Malhotra D.
        • Troge J.
        • Lese-Martin C.
        • Walsh T.
        • et al.
        Strong association of de novo copy number mutations with autism.
        Science. 2007; 316: 445-449
        • Walsh T.
        • McClellan J.M.
        • McCarthy S.E.
        • Addington A.M.
        • Pierce S.B.
        • Cooper G.M.
        • et al.
        Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia.
        Science. 2008; 320: 539-543
        • Ferreira M.A.
        • O’Donovan M.C.
        • Meng Y.A.
        • Jones I.R.
        • Ruderfer D.M.
        • Jones L.
        • et al.
        Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder.
        Nat Genet. 2008; 40: 1056-1058
        • Cross-Disorder Group of the Psychiatric Genomics C.
        • Smoller J.W.
        • Craddock N.
        • Kendler K.
        • Lee P.H.
        • Neale B.M.
        • et al.
        Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis.
        Lancet. 2013; 381: 1371-1379
      12. SPIRES. Available at: http://era.nih.gov/nih_and_grantor_agencies/other/spires.cfm. Accessed January 28, 2014.

        • Team S.
        Science of Science (Sci2) Tool. Indiana University and SciTech Strategies.
        Available at. 2009; (http://sci2.cns.iu.edu. Accessed January 28, 2014)
      13. Scopus database. Available at: http://www.scopus.com/search/form.url. Accessed January 28, 2014.

      14. Journal Citation Reports at ISI Web of knowledge. Available at: http://thomsonreuters.com/journal-citation-reports/. Accessed January 28, 2014.