Advertisement

Schizophrenia as a Disorder of Molecular Pathways

  • Szatmár Horváth
    Affiliations
    Department of Psychiatry

    Department of Psychiatry, University of Szeged, Szeged, Hungary
    Search for articles by this author
  • Károly Mirnics
    Correspondence
    Address correspondence to Károly Mirnics, M.D., Ph.D., Vanderbilt University, Department of Psychiatry, 8128 MRB III, 465 21st Avenue South, Nashville, TN 37232
    Affiliations
    Department of Psychiatry

    Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee

    Department of Psychiatry, University of Szeged, Szeged, Hungary
    Search for articles by this author

      Abstract

      Over the last decade, transcriptome studies of postmortem tissue from subjects with schizophrenia revealed that synaptic, mitochondrial, immune system, gamma-aminobutyric acidergic, and oligodendrocytic changes are all integral parts of the disease process. The combined genetic and transcriptomic studies argue that the molecular underpinnings of the disease are even more varied than the symptomatic diversity of schizophrenia. Ultimately, to decipher the pathophysiology of human disorders in general, we will need to understand the function of hundreds of genes and regulatory elements in our genome and the consequences of their overexpression and reduced expression in a developmental context. Furthermore, integration of knowledge from various data sources remains a monumental challenge that has to be systematically addressed in the upcoming decades. In the end, our success in interpreting the molecular changes in schizophrenia will depend on our ability to understand the biology using innovative ideas and cannot depend on the hope of developing novel, more powerful technologies.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Horvath S.
        • Janka Z.
        • Mirnics K.
        Analyzing schizophrenia by DNA microarrays.
        Biol Psychiatry. 2011; 69: 157-162
        • Bhati M.T.
        Defining psychosis: The evolution of DSM-5 schizophrenia spectrum disorders.
        Curr Psychiatry Rep. 2013; 15: 409
        • Michel M.
        • Schmidt M.J.
        • Mirnics K.
        Immune system gene dysregulation in autism and schizophrenia.
        Dev Neurobiol. 2012; 72: 1277-1287
        • Chambers R.A.
        • Krystal J.H.
        • Self D.W.
        A neurobiological basis for substance abuse comorbidity in schizophrenia.
        Biol Psychiatry. 2001; 50: 71-83
        • Mirnics K.
        • Levitt P.
        • Lewis D.A.
        Critical appraisal of DNA microarrays in psychiatric genomics.
        Biol Psychiatry. 2006; 60: 163-176
        • Horvath S.
        • Mirnics K.
        Immune system disturbances in schizophrenia.
        Biol Psychiatry. 2013; 75: 316-323
        • Faludi G.
        • Mirnics K.
        Synaptic changes in the brain of subjects with schizophrenia.
        Int J Dev Neurosci. 2011; 29: 305-309
        • Mirnics K.
        • Middleton F.A.
        • Marquez A.
        • Lewis D.A.
        • Levitt P.
        Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex.
        Neuron. 2000; 28: 53-67
        • Middleton F.A.
        • Mirnics K.
        • Pierri J.N.
        • Lewis D.A.
        • Levitt P.
        Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia.
        J Neurosci. 2002; 22: 2718-2729
        • Clay H.B.
        • Sillivan S.
        • Konradi C.
        Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia.
        Int J Dev Neurosci. 2010; 29: 311-324
        • Arion D.
        • Unger T.
        • Lewis D.A.
        • Levitt P.
        • Mirnics K.
        Molecular evidence for increased expression of genes related to immune and chaperone function in the prefrontal cortex in schizophrenia.
        Biol Psychiatry. 2007; 62: 711-721
        • Hashimoto T.
        • Arion D.
        • Unger T.
        • Maldonado-Aviles J.G.
        • Morris H.M.
        • Volk D.W.
        • et al.
        Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia.
        Mol Psychiatry. 2008; 13: 147-161
        • Lewis D.A.
        • Hashimoto T.
        • Volk D.W.
        Cortical inhibitory neurons and schizophrenia.
        Nat Rev Neurosci. 2005; 6: 312-324
        • Roussos P.
        • Katsel P.
        • Davis K.L.
        • Siever L.J.
        • Haroutunian V.
        A system-level transcriptomic analysis of schizophrenia using postmortem brain tissue samples.
        Arch Gen Psychiatry. 2012; 69: 1205-1213
        • Hakak Y.
        • Walker J.R.
        • Li C.
        • Wong W.H.
        • Davis K.L.
        • Buxbaum J.D.
        • et al.
        Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia.
        Proc Natl Acad Sci U S A. 2001; 98: 4746-4751
        • Gavin D.P.
        • Akbarian S.
        Epigenetic and post-transcriptional dysregulation of gene expression in schizophrenia and related disease.
        Neurobiol Dis. 2013; 46: 255-262
        • Mirnics K.
        • Lewis D.A.
        Genes and subtypes of schizophrenia.
        Trends Mol Med. 2001; 7: 281-283
        • van Erp T.G.
        • Guella I.
        • Vawter M.P.
        • Turner J.
        • Brown G.G.
        • McCarthy G.
        • et al.
        Schizophrenia miR-137 locus risk genotype is associated with dorsolateral prefrontal cortex hyperactivation [published online ahead of print August 1].
        Biol Psychiatry. 2013; (doi:10.1016/j.biopsych.2013.06.016)
        • Beveridge N.J.
        • Cairns M.J.
        MicroRNA dysregulation in schizophrenia.
        Neurobiol Dis. 2011; 46: 263-271
        • Gershon E.S.
        • Alliey-Rodriguez N.
        • Liu C.
        After GWAS: Searching for genetic risk for schizophrenia and bipolar disorder.
        Am J Psychiatry. 2011; 168: 253-256
        • Cross-Disorder Group of the Psychiatric Genomics Consortium, Genetic Risk Outcome of Psychosis (GROUP) Consortium
        Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis.
        Lancet. 2013; 381: 1371-1379
        • Ripke S.
        • O’Dushlaine C.
        • Chambert K.
        • Moran J.L.
        • Kahler A.K.
        • Akterin S.
        • et al.
        Genome-wide association analysis identifies 13 new risk loci for schizophrenia.
        Nat Genet. 2013; 45: 1150-1159
        • Aberg K.A.
        • Liu Y.
        • Bukszar J.
        • McClay J.L.
        • Khachane A.N.
        • Andreassen O.A.
        • et al.
        A comprehensive family-based replication study of schizophrenia genes.
        JAMA Psychiatry. 2013; 70: 573-581
        • Duan J.
        • Sanders A.R.
        • Gejman P.V.
        Genome-wide approaches to schizophrenia.
        Brain Res Bull. 2010; 83: 93-102
        • Curley A.A.
        • Arion D.
        • Volk D.W.
        • Asafu-Adjei J.K.
        • Sampson A.R.
        • Fish K.N.
        • Lewis D.A.
        Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: Clinical, protein, and cell type-specific features.
        Am J Psychiatry. 2011; 168: 921-929
        • Saetre P.
        • Emilsson L.
        • Axelsson E.
        • Kreuger J.
        • Lindholm E.
        • Jazin E.
        Inflammation-related genes up-regulated in schizophrenia brains.
        BMC Psychiatry. 2007; 7: 46
        • Gilman S.R.
        • Chang J.
        • Xu B.
        • Bawa T.S.
        • Gogos J.A.
        • Karayiorgou M.
        • Vitkup D.
        Diverse types of genetic variation converge on functional gene networks involved in schizophrenia.
        Nat Neurosci. 2013; 15: 1723-1728
        • Richards A.L.
        • Jones L.
        • Moskvina V.
        • Kirov G.
        • Gejman P.V.
        • Levinson D.F.
        • et al.
        Schizophrenia susceptibility alleles are enriched for alleles that affect gene expression in adult human brain.
        Mol Psychiatry. 2012; 17: 193-201
        • Corvin A.
        • Morris D.W.
        Genome-wide association studies: Findings at the major histocompatibility complex locus in psychosis [published online ahead of print September 29].
        Biol Psychiatry. 2013;
        • Kano S.
        • Nwulia E.
        • Niwa M.
        • Chen Y.
        • Sawa A.
        • Cascella N.
        Altered MHC class I expression in dorsolateral prefrontal cortex of nonsmoker patients with schizophrenia.
        Neurosci Res. 2013; 71: 289-293
        • Sinkus M.L.
        • Adams C.E.
        • Logel J.
        • Freedman R.
        • Leonard S.
        Expression of immune genes on chromosome 6p21.3-22.1 in schizophrenia.
        Brain Behav Immun. 2013; 32: 51-62
        • Bigos K.L.
        • Mattay V.S.
        • Callicott J.H.
        • Straub R.E.
        • Vakkalanka R.
        • Kolachana B.
        • et al.
        Genetic variation in CACNA1C affects brain circuitries related to mental illness.
        Arch Gen Psychiatry. 2010; 67: 939-945
        • Kim S.
        • Cho H.
        • Lee D.
        • Webster M.J.
        Association between SNPs and gene expression in multiple regions of the human brain.
        Transl Psychiatry. 2013; 2: e113
        • Brown A.S.
        The environment and susceptibility to schizophrenia.
        Prog Neurobiol. 2010; 93: 23-58
        • Cash-Padgett T.
        • Jaaro-Peled H.
        DISC1 mouse models as a tool to decipher gene-environment interactions in psychiatric disorders.
        Front Behav Neurosci. 2013; 7: 113
        • Niwa M.
        • Jaaro-Peled H.
        • Tankou S.
        • Seshadri S.
        • Hikida T.
        • Matsumoto Y.
        • et al.
        Adolescent stress-induced epigenetic control of dopaminergic neurons via glucocorticoids.
        Science. 2013; 339: 335-339
        • Ibi D.
        • Nagai T.
        • Nakajima A.
        • Mizoguchi H.
        • Kawase T.
        • Tsuboi D.
        • et al.
        Astroglial IFITM3 mediates neuronal impairments following neonatal immune challenge in mice.
        Glia. 2013; 61: 679-693
        • Gonda X.
        • Fountoulakis K.N.
        • Harro J.
        • Pompili M.
        • Akiskal H.S.
        • Bagdy G.
        • Rihmer Z.
        The possible contributory role of the S allele of 5-HTTLPR in the emergence of suicidality.
        J Psychopharmacol. 2010; 25: 857-866
        • Caspi A.
        • Sugden K.
        • Moffitt T.E.
        • Taylor A.
        • Craig I.W.
        • Harrington H.
        • et al.
        Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene.
        Science. 2003; 301: 386-389
        • Lazarov O.
        • Robinson J.
        • Tang Y.P.
        • Hairston I.S.
        • Korade-Mirnics Z.
        • Lee V.M.
        • et al.
        Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice.
        Cell. 2005; 120: 701-713
        • Fang Y.
        Guiding research and practice: A conceptual model for aerobic exercise training in Alzheimer’s disease.
        Am J Alzheimers Dis Other Demen. 2013; 26: 184-194
        • Grazina R.
        • Massano J.
        Physical exercise and Parkinson’s disease: Influence on symptoms, disease course and prevention.
        Rev Neurosci. 2013; 24: 139-152
        • Kloos A.D.
        • Fritz N.E.
        • Kostyk S.K.
        • Young G.S.
        • Kegelmeyer D.A.
        Video game play (Dance Dance Revolution) as a potential exercise therapy in Huntington’s disease: A controlled clinical trial.
        Clin Rehabil. 2013; 27: 972-982
        • Ripke S.
        • Wray N.R.
        • Lewis C.M.
        • Hamilton S.P.
        • Weissman M.M.
        • et al.
        A mega-analysis of genome-wide association studies for major depressive disorder.
        Mol Psychiatry. 2012; 18 (Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium): 497-511
        • Horvath S.
        • Mirnics K.
        Breaking the gene barrier in schizophrenia.
        Nat Med. 2009; 15: 488-490
        • Lewis D.A.
        • Levitt P.
        Schizophrenia as a disorder of neurodevelopment.
        Annu Rev Neurosci. 2002; 25: 409-432
        • Meltzer H.Y.
        Update on typical and atypical antipsychotic drugs.
        Annu Rev Med. 2013; 64: 393-406
        • Zhang J.P.
        • Malhotra A.K.
        Pharmacogenetics of antipsychotics: Recent progress and methodological issues.
        Expert Opin Drug Metab Toxicol. 2013; 9: 183-191
        • Glorioso C.
        • Sabatini M.
        • Unger T.
        • Hashimoto T.
        • Monteggia L.M.
        • Lewis D.A.
        • Mirnics K.
        Specificity and timing of neocortical transcriptome changes in response to BDNF gene ablation during embryogenesis or adulthood.
        Mol Psychiatry. 2006; 11: 633-648
        • Chapman E.R.
        How does synaptotagmin trigger neurotransmitter release?.
        Annu Rev Biochem. 2008; 77: 615-641
        • Middleton F.A.
        • Peng L.
        • Lewis D.A.
        • Levitt P.
        • Mirnics K.
        Altered expression of 14-3-3 genes in the prefrontal cortex of subjects with schizophrenia.
        Neuropsychopharmacology. 2005; 30: 974-983
        • Mirnics K.
        What is in the brain soup?.
        Nat Neurosci. 2008; 11: 1237-1238
        • Winden K.D.
        • Oldham M.C.
        • Mirnics K
        • Ebert P.J.
        • Swan C.H.
        • Levitt P.
        • et al.
        The organization of the transcriptional network in specific neuronal classes.
        Mol Syst Biol. 2009; 5: 291
        • Ruzicka W.B.
        • Zhubi A.
        • Veldic M.
        • Grayson D.R.
        • Costa E.
        • Guidotti A.
        Selective epigenetic alteration of layer I GABAergic neurons isolated from prefrontal cortex of schizophrenia patients using laser-assisted microdissection.
        Mol Psychiatry. 2007; 12: 385-397
        • Sodhi M.S.
        • Simmons M.
        • McCullumsmith R.
        • Haroutunian V.
        • Meador-Woodruff J.H.
        Glutamatergic gene expression is specifically reduced in thalamocortical projecting relay neurons in schizophrenia.
        Biol Psychiatry. 2011; 70: 646-654
        • Arion D.
        • Horvath S.
        • Lewis D.A.
        • Mirnics K.
        Infragranular gene expression disturbances in the prefrontal cortex in schizophrenia: Signature of altered neural development?.
        Neurobiol Dis. 2009; 37: 738-746
        • Arion D.
        • Unger T.
        • Lewis D.A.
        • Mirnics K.
        Molecular markers distinguishing supragranular and infragranular layers in the human prefrontal cortex.
        Eur J Neurosci. 2007; 25: 1843-1854
        • Faux C.
        • Rakic S.
        • Andrews W.
        • Yanagawa Y.
        • Obata K.
        • Parnavelas J.G.
        Differential gene expression in migrating cortical interneurons during mouse forebrain development.
        J Comp Neurol. 2010; 518: 1232-1248
        • Nishioka M.
        • Shimada T.
        • Bundo M.
        • Ukai W.
        • Hashimoto E.
        • Saito T.
        • et al.
        Neuronal cell-type specific DNA methylation patterns of the Cacna1c gene.
        Int J Dev Neurosci. 2012; 31: 89-95
        • Mitchell A.C.
        • Mirnics K.
        Gene expression profiling of the brain: Pondering facts and fiction.
        Neurobiol Dis. 2011; 45: 3-7
        • Ginsberg S.D.
        • Mirnics K.
        Functional genomic methodologies.
        Prog Brain Res. 2006; 158: 15-40
        • Stober G.
        • Ben-Shachar D.
        • Cardon M.
        • Falkai P.
        • Fonteh A.N.
        • Gawlik M.
        • et al.
        Schizophrenia: From the brain to peripheral markers. A consensus paper of the WFSBP task force on biological markers.
        World J Biol Psychiatry. 2009; 10: 127-155
        • Yu D.X.
        • Marchetto M.C.
        • Gage F.H.
        Therapeutic translation of iPSCs for treating neurological disease.
        Cell Stem Cell. 2013; 12: 678-688
        • Kano S.
        • Colantuoni C.
        • Han F.
        • Zhou Z.
        • Yuan Q.
        • Wilson A.
        • et al.
        Genome-wide profiling of multiple histone methylations in olfactory cells: Further implications for cellular susceptibility to oxidative stress in schizophrenia.
        Mol Psychiatry. 2013; 18: 740-742
        • Gulsuner S.
        • Walsh T.
        • Watts A.C.
        • Lee M.K.
        • Thornton A.M.
        • Casadei S.
        • et al.
        Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network.
        Cell. 2013; 154: 518-529
        • Kandel E.R.
        • Markram H.
        • Matthews P.M.
        • Yuste R.
        • Koch C.
        Neuroscience thinks big (and collaboratively).
        Nat Rev Neurosci. 2013; 14: 659-664
        • Lichtman J.W.
        • Sanes J.R.
        Ome sweet ome: What can the genome tell us about the connectome?.
        Curr Opin Neurobiol. 2008; 18: 346-353
        • Van Essen D.C.
        • Ugurbil K.
        • Auerbach E.
        • Barch D.
        • Behrens T.E.
        • Bucholz R.
        • et al.
        The Human Connectome Project: A data acquisition perspective.
        Neuroimage. 2012; 62: 2222-2231
        • Roberts L.
        • Davenport R.J.
        • Pennisi E.
        • Marshall E.
        A history of the Human Genome Project.
        Science. 2001; 291: 1195