Advertisement
Archival Report| Volume 76, ISSUE 8, P656-663, October 15, 2014

Connectomic Disturbances in Attention-Deficit/Hyperactivity Disorder: A Whole-Brain Tractography Analysis

      Background

      Few studies have sought to identify, in a regionally unbiased way, the precise cortical and subcortical regions that are affected by white matter abnormalities in attention-deficit/hyperactivity disorder (ADHD). This study aimed to derive a comprehensive, whole-brain characterization of connectomic disturbances in ADHD.

      Methods

      Using diffusion tensor imaging, whole-brain tractography, and an imaging connectomics approach, we characterized altered white matter connectivity in 71 children and adolescents with ADHD compared with 26 healthy control subjects. White matter differences were further delineated between patients with (n = 40) and without (n = 26) the predominantly hyperactive/impulsive subtype of ADHD.

      Results

      A significant network comprising 25 distinct fiber bundles linking 23 different brain regions spanning frontal, striatal, and cerebellar brain regions showed altered white matter structure in ADHD patients (p < .05, family-wise error-corrected). Moreover, fractional anisotropy in some of these fiber bundles correlated with attentional disturbances. Attention-deficit/hyperactivity disorder subtypes were differentiated by a right-lateralized network (p < .05, family-wise error-corrected) predominantly linking frontal, cingulate, and supplementary motor areas. Fractional anisotropy in this network was also correlated with continuous performance test scores.

      Conclusions

      Using an unbiased, whole-brain, data-driven approach, we demonstrated abnormal white matter connectivity in ADHD. The correlations observed with measures of attentional performance underscore the functional importance of these connectomic disturbances for the clinical phenotype of ADHD. A distributed pattern of white matter microstructural integrity separately involving frontal, striatal, and cerebellar brain regions, rather than direct frontostriatal connectivity, appears to be disrupted in children and adolescents with ADHD.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Polanczyk G.
        • de Lima M.S.
        • Horta B.L.
        • Biederman J.
        • Rohde L.A.
        The worldwide prevalence of ADHD: A systematic review and metaregression analysis.
        Am J Psychiatry. 2007; 164: 942-948
        • Casey B.J.
        • Castellanos F.X.
        • Giedd J.N.
        • Marsh W.L.
        • Hamburger S.D.
        • Schubert A.B.
        • et al.
        Implication of right frontostriatal circuitry in response inhibition and attention-deficit/hyperactivity disorder.
        J Am Acad Child Adolesc Psychiatry. 1997; 36: 374-383
        • Durston S.
        • van Belle J.
        • de Zeeuw P.
        Differentiating frontostriatal and fronto-cerebellar circuits in attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2011; 69: 1178-1184
        • Bush G.
        Attention-deficit/hyperactivity disorder and attention networks.
        Neuropsychopharmacology. 2010; 35: 278-300
        • Makris N.
        • Biederman J.
        • Monuteaux M.C.
        • Seidman L.J.
        Towards conceptualizing a neural systems-based anatomy of attention-deficit/hyperactivity disorder.
        Dev Neurosci. 2009; 31: 36-49
        • Nakao T.
        • Radua J.
        • Rubia K.
        • Mataix-Cols D.
        Gray matter volume abnormalities in ADHD: Voxel-based meta-analysis exploring the effects of age and stimulant medication.
        Am J Psychiatry. 2011; 168: 1154-1163
        • Haber S.N.
        • Knutson B.
        The reward circuit: Linking primate anatomy and human imaging.
        Neuropsychopharmacology. 2010; 35: 4-26
        • Chanraud S.
        • Zahr N.
        • Sullivan E.V.
        • Pfefferbaum A.
        MR diffusion tensor imaging: A window into white matter integrity of the working brain.
        Neuropsychol Rev. 2010; 20: 209-225
        • Casey B.J.
        • Epstein J.N.
        • Buhle J.
        • Liston C.
        • Davidson M.C.
        • Tonev S.T.
        • et al.
        Frontostriatal connectivity and its role in cognitive control in parent-child dyads with ADHD.
        Am J Psychiatry. 2007; 164: 1729-1736
        • van Ewijk H.
        • Heslenfeld D.J.
        • Zwiers M.P.
        • Buitelaar J.K.
        • Oosterlaan J.
        Diffusion tensor imaging in attention deficit/hyperactivity disorder: A systematic review and meta-analysis.
        Neurosci Biobehav Rev. 2012; 36: 1093-1106
        • Liston C.
        • Malter Cohen M.
        • Teslovich T.
        • Levenson D.
        • Casey B.J.
        Atypical prefrontal connectivity in attention-deficit/hyperactivity disorder: Pathway to disease or pathological end point?.
        Biol Psychiatry. 2011; 69: 1168-1177
        • Wu Y.H.
        • Gau S.S.
        • Lo Y.C.
        • Tseng W.Y.
        White matter tract integrity of frontostriatal circuit in attention deficit hyperactivity disorder: Association with attention performance and symptoms.
        Hum Brain Mapp. 2014; 35: 199-212
        • Zalesky A.
        • Fornito A.
        • Seal M.L.
        • Cocchi L.
        • Westin C.F.
        • Bullmore E.T.
        • et al.
        Disrupted axonal fiber connectivity in schizophrenia.
        Biol Psychiatry. 2011; 69: 80-89
        • Sporns O.
        Discovering the Human Connectome.
        MIT Press, Cambridge, MA2012
        • Li L.
        • Rilling J.K.
        • Preuss T.M.
        • Glasser M.F.
        • Hu X.
        The effects of connection reconstruction method on the interregional connectivity of brain networks via diffusion tractography.
        Hum Brain Mapp. 2012; 33: 1894-1913
        • Hong S.B.
        • Zalesky A.
        • Cocchi L.
        • Fornito A.
        • Choi E.J.
        • Kim H.H.
        • et al.
        Decreased functional brain connectivity in adolescents with internet addiction.
        PLoS One. 2013; 8: e57831
        • Cao Q.
        • Shu N.
        • An L.
        • Wang P.
        • Sun L.
        • Xia M.R.
        • et al.
        Probabilistic diffusion tractography and graph theory analysis reveal abnormal white matter structural connectivity networks in drug-naive boys with attention deficit/hyperactivity disorder.
        J Neurosci. 2013; 33: 10676-10687
        • Kaufman J.
        • Birmaher B.
        • Brent D.
        • Rao U.
        • Flynn C.
        • Moreci P.
        • et al.
        Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL): Initial reliability and validity data.
        J Am Acad Child Adolesc Psychiatry. 1997; 36: 980-988
        • Kim Y.S.
        • Cheon K.A.
        • Kim B.N.
        • Chang S.A.
        • Yoo H.J.
        • Kim J.W.
        • et al.
        The reliability and validity of Kiddie-Schedule for Affective Disorders and Schizophrenia-Present and Lifetime Version-Korean version (K-SADS-PL-K).
        Yonsei Med J. 2004; 45: 81-89
        • Greenberg L.M.
        • Waldman I.D.
        Developmental normative data on the test of variables of attention (T.O.V.A.).
        J Child Psychol Psychiatry. 1993; 34: 1019-1030
        • Shin M.S.
        • Cho S.
        • Chun S.Y.
        • Hong K.E.
        A study of the development and standardization of ADHD Diagnostic System.
        Korean J Child Adolesc Psychiatry. 2000; 11: 91-99
        • Epstein J.N.
        • Erkanli A.
        • Conners C.K.
        • Klaric J.
        • Costello J.E.
        • Angold A.
        Relations between Continuous Performance Test performance measures and ADHD behaviors.
        J Abnorm Child Psychol. 2003; 31: 543-554
        • Zalesky A.
        • Cocchi L.
        • Fornito A.
        • Murray M.M.
        • Bullmore E.
        Connectivity differences in brain networks.
        Neuroimage. 2012; 60: 1055-1062
        • Zalesky A.
        • Fornito A.
        • Bullmore E.T.
        Network-based statistic: Identifying differences in brain networks.
        Neuroimage. 2010; 53: 1197-1207
        • Nichols T.E.
        • Holmes A.P.
        Nonparametric permutation tests for functional neuroimaging: A primer with examples.
        Hum Brain Mapp. 2002; 15: 1-25
        • Frazier T.W.
        • Demaree H.A.
        • Youngstrom E.A.
        Meta-analysis of intellectual and neuropsychological test performance in attention-deficit/hyperactivity disorder.
        Neuropsychology. 2004; 18: 543-555
        • Xia M.
        • Wang J.
        • He Y.
        BrainNet Viewer: A network visualization tool for human brain connectomics.
        PLoS One. 2013; 8: e68910
        • Hamilton L.S.
        • Levitt J.G.
        • O’Neill J.
        • Alger J.R.
        • Luders E.
        • Phillips O.R.
        • et al.
        Reduced white matter integrity in attention-deficit hyperactivity disorder.
        Neuroreport. 2008; 19: 1705-1708
        • Kobel M.
        • Bechtel N.
        • Specht K.
        • Klarhofer M.
        • Weber P.
        • Scheffler K.
        • et al.
        Structural and functional imaging approaches in attention deficit/hyperactivity disorder: Does the temporal lobe play a key role?.
        Psychiatry Res. 2010; 183: 230-236
        • Makris N.
        • Buka S.L.
        • Biederman J.
        • Papadimitriou G.M.
        • Hodge S.M.
        • Valera E.M.
        • et al.
        Attention and executive systems abnormalities in adults with childhood ADHD: A DT-MRI study of connections.
        Cereb Cortex. 2008; 18: 1210-1220
        • Nagel B.J.
        • Bathula D.
        • Herting M.
        • Schmitt C.
        • Kroenke C.D.
        • Fair D.
        • Nigg J.T.
        Altered white matter microstructure in children with attention-deficit/hyperactivity disorder.
        J Am Acad Child Adolesc Psychiatry. 2011; 50: 283-292
        • Pavuluri M.N.
        • Yang S.
        • Kamineni K.
        • Passarotti A.M.
        • Srinivasan G.
        • Harral E.M.
        • et al.
        Diffusion tensor imaging study of white matter fiber tracts in pediatric bipolar disorder and attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2009; 65: 586-593
        • Qiu M.G.
        • Ye Z.
        • Li Q.Y.
        • Liu G.J.
        • Xie B.
        • Wang J.
        Changes of brain structure and function in ADHD children.
        Brain Topogr. 2011; 24: 243-252
        • Silk T.J.
        • Vance A.
        • Rinehart N.
        • Bradshaw J.L.
        • Cunnington R.
        White-matter abnormalities in attention deficit hyperactivity disorder: A diffusion tensor imaging study.
        Hum Brain Mapp. 2009; 30: 2757-2765
        • Castellanos F.X.
        • Proal E.
        Large-scale brain systems in ADHD: Beyond the prefrontal-striatal model.
        Trends Cogn Sci. 2012; 16: 17-26
        • Cocchi L.
        • Bramati I.E.
        • Zalesky A.
        • Furukawa E.
        • Fontenelle L.F.
        • Moll J.
        • et al.
        Altered functional brain connectivity in a non-clinical sample of young adults with attention-deficit/hyperactivity disorder.
        J Neurosci. 2012; 32: 17753-17761
        • Arnsten A.F.
        • Rubia K.
        Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: Disruptions in neurodevelopmental psychiatric disorders.
        J Am Acad Child Adolesc Psychiatry. 2012; 51: 356-367
        • An L.
        • Cao X.H.
        • Cao Q.J.
        • Sun L.
        • Yang L.
        • Zou Q.H.
        • et al.
        Methylphenidate normalizes resting-state brain dysfunction in boys with attention deficit hyperactivity disorder.
        Neuropsychopharmacology. 2013; 38: 1287-1295
        • Konrad K.
        • Eickhoff S.B.
        Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder.
        Hum Brain Mapp. 2010; 31: 904-916
        • Krain A.L.
        • Castellanos F.X.
        Brain development and ADHD.
        Clin Psychol Rev. 2006; 26: 433-444
        • Ramnani N.
        Frontal lobe and posterior parietal contributions to the cortico-cerebellar system.
        Cerebellum. 2012; 11: 366-383
        • Hoshi E.
        • Tremblay L.
        • Feger J.
        • Carras P.L.
        • Strick P.L.
        The cerebellum communicates with the basal ganglia.
        Nat Neurosci. 2005; 8: 1491-1493
        • Wu T.
        • Hallett M.
        The cerebellum in Parkinson’s disease.
        Brain. 2013; 136: 696-709
        • Kebir O.
        • Tabbane K.
        • Sengupta S.
        • Joober R.
        Candidate genes and neuropsychological phenotypes in children with ADHD: Review of association studies.
        J Psychiatry Neurosci. 2009; 34: 88-101
        • Kollins S.H.
        • Anastopoulos A.D.
        • Lachiewicz A.M.
        • FitzGerald D.
        • Morrissey-Kane E.
        • Garrett M.E.
        • et al.
        SNPs in dopamine D2 receptor gene (DRD2) and norepinephrine transporter gene (NET) are associated with continuous performance task (CPT) phenotypes in ADHD children and their families.
        Am J Med Genet B Neuropsychiatr Genet. 2008; 147B: 1580-1588
        • Whelan R.
        • Conrod P.J.
        • Poline J.B.
        • Lourdusamy A.
        • Banaschewski T.
        • Barker G.J.
        • et al.
        Adolescent impulsivity phenotypes characterized by distinct brain networks.
        Nat Neurosci. 2012; 15: 920-925
        • Hart H.
        • Radua J.
        • Nakao T.
        • Mataix-Cols D.
        • Rubia K.
        Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: Exploring task-specific, stimulant medication, and age effects.
        JAMA Psychiatry. 2013; 70: 185-198
        • Shaw P.
        • Lalonde F.
        • Lepage C.
        • Rabin C.
        • Eckstrand K.
        • Sharp W.
        • et al.
        Development of cortical asymmetry in typically developing children and its disruption in attention-deficit/hyperactivity disorder.
        Arch Gen Psychiatry. 2009; 66: 888-896
        • Haggard P.
        Conscious intention and motor cognition.
        Trends Cogn Sci. 2005; 9: 290-295
        • Fried I.
        • Katz A.
        • McCarthy G.
        • Sass K.J.
        • Williamson P.
        • Spencer S.S.
        • Spencer D.D.
        Functional organization of human supplementary motor cortex studied by electrical stimulation.
        J Neurosci. 1991; 11: 3656-3666
        • Lau H.C.
        • Rogers R.D.
        • Haggard P.
        • Passingham R.E.
        Attention to intention.
        Science. 2004; 303: 1208-1210
        • Lim S.H.
        • Dinner D.S.
        • Pillay P.K.
        • Luders H.
        • Morris H.H.
        • Klem G.
        • et al.
        Functional anatomy of the human supplementary sensorimotor area: Results of extraoperative electrical stimulation.
        Electroencephalogr Clin Neurophysiol. 1994; 91: 179-193
        • Shaw P.
        • Sharp W.S.
        • Morrison M.
        • Eckstrand K.
        • Greenstein D.K.
        • Clasen L.S.
        • et al.
        Psychostimulant treatment and the developing cortex in attention deficit hyperactivity disorder.
        Am J Psychiatry. 2009; 166: 58-63
        • Wedeen V.J.
        • Wang R.P.
        • Schmahmann J.D.
        • Benner T.
        • Tseng W.Y.
        • Dai G.
        • et al.
        Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers.
        Neuroimage. 2008; 41: 1267-1277
        • Bassett D.S.
        • Brown J.A.
        • Deshpande V.
        • Carlson J.M.
        • Grafton S.T.
        Conserved and variable architecture of human white matter connectivity.
        Neuroimage. 2011; 54: 1262-1279
        • Zalesky A.
        • Fornito A.
        • Harding I.H.
        • Cocchi L.
        • Yucel M.
        • Pantelis C.
        • Bullmore E.T.
        Whole-brain anatomical networks: Does the choice of nodes matter?.
        Neuroimage. 2010; 50: 970-983
        • Wig G.S.
        • Schlaggar B.L.
        • Petersen S.E.
        Concepts and principles in the analysis of brain networks.
        Ann N Y Acad Sci. 2011; 1224: 126-146

      Linked Article

      • Advances in the Genetics of Attention-Deficit/Hyperactivity Disorder
        Biological PsychiatryVol. 76Issue 8
        • Preview
          One of the most replicated findings in studies of attention-deficit/hyperactivity disorder (ADHD) is its very high heritability, which averages approximately 75% across 20 twin studies conducted on three continents (1). ADHD’s high heritability kick-started a search for DNA variants with the hope that their discovery would lead to advances in diagnosis and treatment. During the dark decades of linkage and candidate gene studies, progress was slow, but in the past few years, boosted by genome-wide association studies (GWAS), the ADHD research community has made real breakthroughs.
        • Full-Text
        • PDF
      • Understanding Alterations in Brain Connectivity in Attention-Deficit/Hyperactivity Disorder Using Imaging Connectomics
        Biological PsychiatryVol. 76Issue 8
        • Preview
          Evaluation of neural systems and brain connections is an important new area of research to understand both normal brain connectivity and alterations in brain connectivity in neuropsychiatric disorders. The study of brain connectivity is also a major focus of current neuroscience. In humans, very little is known about neural networks in the living brain, although the Human Connectome Project ( http://www.neuroscienceblueprint.nih.gov/connectome/ ) has as one of its main goals to understand better brain connections using the highest quality imaging data available today.
        • Full-Text
        • PDF