Advertisement

Immune Activation Promotes Depression 1 Month After Diffuse Brain Injury: A Role for Primed Microglia

Published:December 02, 2013DOI:https://doi.org/10.1016/j.biopsych.2013.10.014

      Background

      Traumatic brain injury (TBI) is associated with a higher incidence of depression. The majority of individuals who suffer a TBI are juveniles and young adults, and thus, the risk of a lifetime of depressive complications is a significant concern. The etiology of increased TBI-associated depression is unclear but may be inflammatory-related with increased brain sensitivity to secondary inflammatory challenges (e.g., stressors, infection, and injury).

      Methods

      Adult male BALB/c mice received a sham (n = 52) or midline fluid percussion injury (TBI; n = 57). Neuroinflammation, motor coordination (rotarod), and depressive behaviors (social withdrawal, immobility in the tail suspension test, and anhedonia) were assessed 4 hours, 24 hours, 72 hours, 7 days, or 30 days later. Moreover, 30 days after surgery, sham and TBI mice received a peripheral injection of saline or lipopolysaccharide (LPS) and microglia activation and behavior were determined.

      Results

      Diffuse TBI caused inflammation, peripheral cell recruitment, and microglia activation immediately after injury coinciding with motor coordination deficits. These transient events resolved within 7 days. Nonetheless, 30 days post-TBI a population of deramified and major histocompatibility complex II+ (primed) microglia were detected. After a peripheral LPS challenge, the inflammatory cytokine response in primed microglia of TBI mice was exaggerated compared with microglia of controls. Furthermore, this LPS-induced microglia reactivity 30 days after TBI was associated with the onset of depressive-like behavior.

      Conclusions

      These results implicate a primed and immune-reactive microglial population as a possible triggering mechanism for the development of depressive complications after TBI.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • McCrea M.
        • Guskiewicz K.M.
        • Marshall S.W.
        • Barr W.
        • Randolph C.
        • Cantu R.C.
        • et al.
        Acute effects and recovery time following concussion in collegiate football players: The NCAA concussion study.
        JAMA. 2003; 290: 2556-2563
        • Lifshitz J.
        • Witgen B.
        • Grady M.
        Acute cognitive impairment after lateral fluid percussion brain injury recovers by 1 month: Evaluation by conditioned fear response.
        Behav Brain Res. 2007; 177: 347-357
        • Tang Y.
        • Noda Y.
        • Hasegawa T.
        • Nabeshima T.
        A concussive-like brain injury model in mice (I): Impairment in learning and memory.
        J Neurotrauma. 1997; 14: 851-862
        • Woodcock T.
        • Morganti-Kossmann M.C.
        The role of markers of inflammation in traumatic brain injury.
        Front Neurol. 2013; 4: 18
        • Jorge R.
        • Robinson R.
        • Arndt S.
        • Starkstein S.
        • Forrester A.
        • Geisler F.
        Depression following traumatic brain injury: A 1 year longitudinal study.
        J Affect Disorders. 1993; 27: 233-243
        • Fleminger S.
        Long-term psychiatric disorders after traumatic brain injury.
        Eur J Anesth. 2008; 25: 123-130
        • Kreutzer J.S.
        • Seel R.T.
        • Gourley E.
        The prevalence and symptom rates of depression after traumatic brain injury: A comprehensive examination.
        Brain Injury. 2001; 15: 563-576
        • Gualtieri T.
        • Cox D.R.
        The delayed neurobehavioural sequelae of traumatic brain injury.
        Brain Injury. 1991; 5: 219-232
        • Jorge R.
        • Robinson R.
        • Moser D.
        • Tateno A.
        • Crespo-Facorro B.
        • Arndt S.
        Major depression following traumatic brain injury.
        Arch Gen Psychiatry. 2004; 61: 42-50
        • Hibbard M.R.
        • Uysal S.
        • Kepler K.
        • Bogdany J.
        • Silver J.
        Axis I psychopathology in individuals with traumatic brain injury.
        J Head Trauma Rehab. 1998; 13: 24-39
        • Holsinger T.
        • Steffens D.C.
        • Phillips C.
        • Helms M.J.
        • Havlik R.J.
        • Breitner J.C.
        • et al.
        Head injury in early adulthood and the lifetime risk of depression.
        Arch Gen Psychiatry. 2002; 59: 17-22
        • Teasdale T.
        • Engberg A.
        Suicide after traumatic brain injury: A population study.
        J Neurol Neurosurg Psychiatry. 2001; 71: 436-440
        • Saran A.
        Antidepressants not effective in headache associated with minor closed head injury.
        Int J Psychiat Med. 1988; 18: 75-83
        • Ashman T.A.
        • Cantor J.B.
        • Gordon W.A.
        • Spielman L.
        • Flanagan S.
        • Ginsberg A.
        • et al.
        A randomized controlled trial of sertraline for the treatment of depression in persons with traumatic brain injury.
        Arch Phys Med Rehab. 2009; 90: 733-740
        • Miller A.H.
        • Raison C.L.
        Immune system contributions to the pathophysiology of depression.
        Focus. 2008; 6: 36-45
        • Raison C.L.
        • Capuron L.
        • Miller A.H.
        Cytokines sing the blues: Inflammation and the pathogenesis of depression.
        Trends Immunol. 2006; 27: 24-31
        • Lanquillon S.
        • Krieg J.C.
        • Bening-Abu-Shach U.
        • Vedder H.
        Cytokine production and treatment response in major depressive disorder.
        Neuropsychopharmacology. 2000; 22: 370-379
        • Maier B.
        • Schwerdtfeger K.
        • Mautes A.
        • Holanda M.
        • Muller M.
        • Steudel W.I.
        • et al.
        Differential release of interleukines 6, 8, and 10 in cerebrospinal fluid and plasma after traumatic brain injury.
        Shock. 2001; 15: 421-426
        • Fassbender K.
        • Schneider S.
        • Bertsch T.
        • Schlueter D.
        • Fatar M.
        • Ragoschke A.
        • et al.
        Temporal profile of release of interleukin-b in neurotrauma.
        Neurosci Lett. 2000; 284: 135
        • Kossmann T.
        • Hans V.H.
        • Imhof H.G.
        • Stocker R.
        • Grob P.
        • Trentz O.
        • et al.
        Intrathecal and serum interleukin-6 and the acute-phase response in patients with severe traumatic brain injuries.
        Shock. 1995; 4: 311-317
        • Gentleman S.M.
        • Leclercq P.D.
        • Moyes L.
        • Graham D.I.
        • Smith C.
        • Griffin W.S.T.
        • et al.
        Long-term intracerebral inflammatory response after traumatic brain injury.
        Forensic Sci Int. 2004; 146: 97-104
        • Barrientos R.
        • Frank M.
        • Watkins L.
        • Maier S.
        Memory impairments in healthy aging: Role of aging-induced microglial sensitization.
        Aging Dis. 2010; 1: 212-231
        • Henry C.
        • Huang Y.
        • Wynne A.M.
        • Godbout J.P.
        Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1[beta] and anti-inflammatory IL-10 cytokines.
        Brain Behav Immun. 2009; 23: 309-317
        • Wohleb E.S.
        • Fenn A.M.
        • Pacenta A.M.
        • Powell N.D.
        • Sheridan J.F.
        • Godbout J.P.
        Peripheral innate immune challenge exaggerated microglia activation, increased the number of inflammatory CNS macrophages, and prolonged social withdrawal in socially defeated mice.
        Psychoneuroendocrinol. 2012; 37: 1491-1505
        • Bland S.T.
        • Beckley J.T.
        • Young S.
        • Tsang V.
        • Watkins L.R.
        • Maier S.F.
        • et al.
        Enduring consequences of early-life infection on glial and neural cell genesis within cognitive regions of the brain.
        Brain Behav Immun. 2010; 24: 329-338
        • Cunningham C.
        • Campion S.
        • Lunnon K.
        • Murray C.L.
        • Woods J.F.C.
        • Deacon R.M.J.
        • et al.
        Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease.
        Biol Psychiatry. 2009; 65: 304-312
        • Palin K.
        • Cunningham C.
        • Forse P.
        • Perry V.H.
        • Platt N.
        Systemic inflammation switches the inflammatory cytokine profile in CNS wallerian degeneration.
        Neurobiol Dis. 2008; 30: 19-29
        • Jurgens H.A.
        • Johnson R.W.
        Dysregulated neuronal-microglial cross-talk during aging, stress and inflammation.
        Exp Neurol. 2012; 233: 40-48
        • Tremblay M-E
        • Stevens B.
        • Sierra A.
        • Wake H.
        • Bessis A.
        • Nimmerjahn A.
        The role of microglia in the healthy brain.
        J Neurosci. 2011; 31: 16064-16069
        • Chen J.
        • Buchanan J.
        • Sparkman N.
        • Godbout J.
        • Freund G.
        • Johnson R.
        Neuroinflammation and disruption in working memory in aged mice after acute stimulation of the peripheral innate immune system.
        Brain Behav Immun. 2008; 22: 301-311
        • Barrientos R.M.
        • Frank M.G.
        • Hein A.M.
        • Higgins E.A.
        • Watkins L.R.
        • Rudy J.W.
        • et al.
        Time course of hippocampal IL-1 [beta] and memory consolidation impairments in aging rats following peripheral infection.
        Brain Behav Immun. 2009; 23: 46-54
        • Godbout J.
        • Chen J.
        • Abraham J.
        • Richwine A.
        • Berg B.
        • Kelley K.
        • et al.
        Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system.
        FASEB J. 2005; 10: 1329-1331
        • Huang Y.
        • Henry C.
        • Dantzer R.
        • Johnson R.
        • Godbout J.
        Exaggerated sickness behavior and brain proinflammatory cytokine expression in aged mice in response to intracerebroventricular lipopolysaccharide.
        Neurobiol Aging. 2008; 29: 1744-1753
        • Godbout J.
        • Moreau M.
        • Lestage J.
        • Chen J.
        • Sparkman N.
        • O’Connor J.
        • et al.
        Aging exacerbates depressive-like behavior in mice in response to activation of the peripheral innate immune system.
        Neuropsychopharmacol. 2008; 33: 2341-2351
        • Holmin S.
        • Mathiesen T.
        • Shetye J.
        • Biberfeld P.
        Intracerebral inflammatory response to experimental brain contusion.
        Acta Nirochlrurglca. 1995; 132: 110-119
        • Lifshitz J.
        • Kelley B.J.
        • Povlishock J.T.
        Perisomatic thalamic axotomy after diffuse traumatic brain injury is associated with atrophy rather than cell death.
        J Neuropathol Exp Neurol. 2007; 66: 218-229
        • Morales D.
        • Marklund N.
        • Lebold D.
        • Thompson H.
        • Pitkanen A.
        • Maxwell W.
        • et al.
        Experimental models of traumatic brain injury: Do we really need to build a better mousetrap?.
        Neuroscience. 2005; 136: 971-989
        • Lifshitz J.
        Fluid percussion injury model.
        in: Animal Models of Acute Neurological Injuries. Humana Press, Clifton, NJ2009: 369-384
        • Fenn A.M.
        • Henry C.J.
        • Huang Y.
        • Dugan A.
        • Godbout J.P.
        Lipopolysaccharide-induced interleukin (IL)-4 receptor-alpha expression and corresponding sensitivity to the m2 promoting effects of IL-4 are impaired in microglia of aged mice.
        Brain Behav Immun. 2012; 26: 766-777
        • Witgen B.
        • Lifshitz J.
        • Smith M.
        • Schwarzbach E.
        • Liang S.
        • Grady M.
        • et al.
        Regional hippocampal alteration associated with cognitive deficit following experimental brain injury: A systems, network and cellular evaluation.
        Neuroscience. 2005; 133: 1-15
        • Bachstetter A.D.
        • Rowe R.K.
        • Kaneko M.
        • Goulding D.
        • Lifshitz J.
        • Van Eldik L.J.
        The p38[alpha] mapk regulates microglial responsiveness to diffuse traumatic brain injury.
        J Neurosci. 2013; 33: 6143-6153
        • Kelley B.J.
        • Lifshitz J.
        • Povlishock J.T.
        Neuroinflammatory responses after experimental diffuse traumatic brain injury.
        J Neuropathol Exp Neurol. 2007; 66: 989-1001
        • Kelley B.J.
        • Farkas O.
        • Lifshitz J.
        • Povlishock J.T.
        Traumatic axonal injury in the perisomatic domain triggers ultrarapid secondary axotomy and Wallerian degeneration.
        Exp Neurol. 2006; 198: 350-360
        • Witgen B.
        • Lifshitz J.
        • Grady M.
        Inbred mouse strains as a tool to analyze hippocampal neuronal loss after brain injury: A stereological study.
        J Neurotraum. 2006; 23: 1320-1329
        • Dunham N.
        • Miya T.
        A note on a simple apparatus for detecting neurological deficits in rats and mice.
        J Am Pharmacol Assoc. 1957; 46: 208-209
        • Corona A.
        • Huang Y.
        • O’Connor J.
        • Dantzer R.
        • Kelley K.
        • Popovich P.
        • et al.
        Fractalkine receptor (CS3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide.
        J Neuroinflamm. 2010; 7: 93
        • Corona A.W.
        • Norden D.M.
        • Skendelas J.P.
        • Huang Y.
        • O’Connor J.C.
        • Lawson M.
        • et al.
        Indoleamine 2,3-dioxygenase inhibition attenuates lipopolysaccharide induced persistent microglial activation and depressive-like complications in fractalkine receptor (CX3CR1)-deficient mice.
        Brain Behav Immun. 2013; 31: 134-142
        • Henry C.
        • Huang Y.
        • Wynne A.
        • Hanke M.
        • Himler J.
        • Bailey M.
        • et al.
        Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia.
        J Neuroinflamm. 2008; 5: 15
        • Paxinos G.
        • Franklin K.
        The Mouse Brain in Stereotaxic Coordinates.
        2nd ed. Academic Press Inc, Waltham, MA2004
        • Wohleb E.S.
        • Hanke M.L.
        • Corona A.W.
        • Powell N.D.
        • Stiner L.T.M.
        • Bailey M.T.
        • et al.
        [beta]-adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat.
        J Neurosci. 2011; 31: 6277
        • Donnelly D.J.
        • Gensel J.C.
        • Ankeny D.P.
        • van Rooijen N.
        • Popovich P.G.
        An efficient and reproducible method for quantifying macrophages in different experimental models of central nervous system pathology.
        J Neurosci Meth. 2009; 181: 36-44
        • Hamm R.J.
        Neurobehavioral assessment of outcome following traumatic brain injury in rats: An evaluation of selected measures.
        J Neurotrauma. 2001; 18: 1207-1216
        • McIntosh T.K.
        • Noble L.
        • Andrews B.
        • Faden A.I.
        Traumatic brain injury in the rat: Characterization of a midline fluid-percussion model.
        Cent Nerv Syst Trauma. 1987; 4: 119-134
        • Schmidt R.H.
        • Grady M.S.
        Regional patterns of blood–brain barrier breakdown following central and lateral fluid percussion injury in rodents.
        J Neurotrauma. 1993; 10: 415-430
        • El Yacoubi M.
        • Bouali S.
        • Popa D.
        • Naudon L.
        • Leroux-Nicollet I.
        • Hamon M.
        • et al.
        Behavioral, neurochemical, and electrophysiological characterization of a genetic mouse model of depression.
        Proc Natl Acad Sci U S A. 2003; 100: 6227-6232
        • Williamson L.L.
        • Sholar P.W.
        • Mistry R.S.
        • Smith S.H.
        • Bilbo S.D.
        Microglia and memory: Modulation by early-life infection.
        J Neurosci. 2011; 31: 15511-15521
        • Bilbo S.D.
        • Schwarz J.M.
        Early-life programming of later-life brain and behavior: A critical role for the immune system.
        Front Behav Neurosci. 2009; 3: 14
        • Murray C.
        • Sanderson D.J.
        • Barkus C.
        • Deacon R.M.J.
        • Rawlins J.N.P.
        • Bannerman D.M.
        • et al.
        Systemic inflammation induces acute working memory deficits in the primed brain: Relevance for delirium.
        Neurobiol Aging. 2010; 33: 603-616
        • Cunningham C.
        • Wilcockson D.C.
        • Campion S.
        • Lunnon K.
        • Perry V.H.
        Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration.
        J Neurosci. 2005; 25: 9275-9284
        • David S.
        • Kroner A.
        Repertoire of microglial and macrophage responses after spinal cord injury.
        Nat Rev Neurosci. 2011; 12: 388-399
        • Chen Z.
        • Jalabi W.
        • Shpargel K.B.
        • Farabaugh K.T.
        • Dutta R.
        • Yin X.
        • et al.
        Lipopolysaccharide-induced microglial activation and neuroprotection against experimental brain injury is independent of hematogenous TLR4.
        J Neurosci. 2012; 32: 11706-11715
        • Frank M.
        • Barrientos R.
        • Biedenkapp J.
        • Rudy J.
        • Watkins L.
        • Maier S.
        mRNA up-regulation of MHC II and pivotal pro-inflammatory genes in normal brain aging.
        Neurobiol Aging. 2006; 27: 717-722
        • Streit W.J.
        Microglia and Alzheimer’s disease pathogenesis.
        J Neurosci Res. 2004; 77: 1-8
        • Ramlackhansingh A.F.
        • Brooks D.J.
        • Greenwood R.J.
        • Bose S.K.
        • Turkheimer F.E.
        • Kinnunen K.M.
        • et al.
        Inflammation after trauma: Microglial activation and traumatic brain injury.
        Ann Neurol. 2011; 70: 374-383
        • Ban E.
        • Milon G.
        • Prudhomme N.
        • Fillion G.
        • Haour F.
        Receptors for interleukin-1 ([alpha] and [beta]) in mouse brain: Mapping and neuronal localization in hippocampus.
        Neuroscience. 1991; 43: 21-30
        • Cunningham E.T.
        • Wada E.
        • Carter D.B.
        • Tracey D.E.
        • Battey J.F.
        • De Souza E.B.
        In situ histochemical localization of type I interleukin-1 receptor messenger RNA in the central nervous system, pituitary, and adrenal gland of the mouse.
        J Neurosci. 1992; 12: 1101-1114
        • Williamson L.L.
        • Bilbo S.D.
        Chemokines and the hippocampus: A new perspective on hippocampal plasticity and vulnerability.
        Brain Behav Immun. 2013; 30: 186-194
        • Godbout J.P.
        • Johnson R.W.
        Age and neuroinflammation: A lifetime of psychoneuroimmune consequences.
        Immunol Allergy Clin. 2009; 29: 321-337
        • Corona A.
        • Fenn A.
        • Godbout J.
        Cognitive and behavioral consequences of impaired immunoregulation in aging.
        J Neuroimmune Pharm. 2012; 7: 7-23
        • Beck A.
        • Ward C.
        • Mendelson M.
        • Mock J.
        • Erbaugh J.
        An inventory for measuring depression.
        Arch Gen Psychiatry. 1961; 4: 561-571
        • Maher F.O.
        • Nolan Y
        • Lynch MA
        Downregulation of IL-4-induced signalling in hippocampus contributes to deficits in LTP in the aged rat.
        Neurobiol Aging. 2005; 26: 717-728
        • Dantzer R.
        • O’Connor J.
        • Freund G.
        • Johnson R.
        • Kelley K.
        From inflammation to sickness and depression: When the immune system subjugates the brain.
        Nat Rev Neurosci. 2008; 9: 46-56
        • Frenois F.
        • Moreau M.
        • O’Connor J.
        • Lawson M.
        • Micon C.
        • Lestage J.
        • et al.
        Lipopolysaccharide induces delayed FosB/DeltaFosB immunostaining within the mouse extended amygdala, hippocampus and hypothalamus, that parallel the expression of depressive-like behavior.
        Psychoneuroendocrinology. 2007; 32: 516-531
        • Steiner J.
        • Walter M.
        • Gos T.
        • Guillemin G.
        • Bernstein H.-G.
        • Sarnyai Z.
        • et al.
        Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immune-modulated glutamatergic neurotransmission?.
        J Neuroinflamm. 2011; 8: 94
        • Dantzer R.
        • O’Connor J.C.
        • Lawson M.A.
        • Kelley K.W.
        Inflammation-associated depression: From serotonin to kynurenine.
        Psychoneuroendocrinology. 2011; 36: 426-436