Advertisement
Archival Report| Volume 76, ISSUE 1, P47-56, July 01, 2014

Download started.

Ok

Methamphetamine Downregulates Striatal Glutamate Receptors via Diverse Epigenetic Mechanisms

  • Subramaniam Jayanthi
    Affiliations
    Molecular Neuropsychiatry Research Branch, US Department of Health and Human Services/National Institutes of Health/National Institute on Drug Abuse/Intramural Research Program, Baltimore, MD
    Search for articles by this author
  • Michael T. McCoy
    Affiliations
    Molecular Neuropsychiatry Research Branch, US Department of Health and Human Services/National Institutes of Health/National Institute on Drug Abuse/Intramural Research Program, Baltimore, MD
    Search for articles by this author
  • Billy Chen
    Affiliations
    Synaptic Plasticity Section, US Department of Health and Human Services/National Institutes of Health/National Institute on Drug Abuse/Intramural Research Program, Baltimore, MD
    Search for articles by this author
  • Jonathan P. Britt
    Affiliations
    Synaptic Plasticity Section, US Department of Health and Human Services/National Institutes of Health/National Institute on Drug Abuse/Intramural Research Program, Baltimore, MD
    Search for articles by this author
  • Saїd Kourrich
    Affiliations
    Synaptic Plasticity Section, US Department of Health and Human Services/National Institutes of Health/National Institute on Drug Abuse/Intramural Research Program, Baltimore, MD
    Search for articles by this author
  • Hau-Jie Yau
    Affiliations
    Synaptic Plasticity Section, US Department of Health and Human Services/National Institutes of Health/National Institute on Drug Abuse/Intramural Research Program, Baltimore, MD
    Search for articles by this author
  • Bruce Ladenheim
    Affiliations
    Molecular Neuropsychiatry Research Branch, US Department of Health and Human Services/National Institutes of Health/National Institute on Drug Abuse/Intramural Research Program, Baltimore, MD
    Search for articles by this author
  • Irina N. Krasnova
    Affiliations
    Molecular Neuropsychiatry Research Branch, US Department of Health and Human Services/National Institutes of Health/National Institute on Drug Abuse/Intramural Research Program, Baltimore, MD
    Search for articles by this author
  • Antonello Bonci
    Affiliations
    Synaptic Plasticity Section, US Department of Health and Human Services/National Institutes of Health/National Institute on Drug Abuse/Intramural Research Program, Baltimore, MD
    Search for articles by this author
  • Jean Lud Cadet
    Correspondence
    Address correspondence to Jean Lud Cadet, M.D., Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse/National Institutes of Health/US Department of Health and Human Services, 251 Bayview Boulevard, Baltimore, MD 21224
    Affiliations
    Molecular Neuropsychiatry Research Branch, US Department of Health and Human Services/National Institutes of Health/National Institute on Drug Abuse/Intramural Research Program, Baltimore, MD
    Search for articles by this author
Published:November 18, 2013DOI:https://doi.org/10.1016/j.biopsych.2013.09.034

      Background

      Chronic methamphetamine (METH) exposure causes neuroadaptations at glutamatergic synapses.

      Methods

      To identify the METH-induced epigenetic underpinnings of these neuroadaptations, we injected increasing METH doses to rats for 2 weeks and measured striatal glutamate receptor expression. We then quantified the effects of METH exposure on histone acetylation. We also measured METH-induced changes in DNA methylation and DNA hydroxymethylation.

      Results

      Chronic METH decreased transcript and protein expression of GluA1 and GluA2 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) and GluN1 N-methyl-D-aspartate receptor subunits. These changes were associated with altered electrophysiological glutamatergic responses in striatal neurons. Chromatin immunoprecipitation-polymerase chain reaction revealed that METH decreased enrichment of acetylated histone H4 on GluA1, GluA2, and GluN1 promoters. Methamphetamine exposure also increased repressor element-1 silencing transcription factor (REST) corepressor 1, methylated CpG binding protein 2, and histone deacetylase 2 enrichment, but not of sirtuin 1 or sirtuin 2, onto GluA1 and GluA2 gene sequences. Moreover, METH caused interactions of REST corepressor 1 and methylated CpG binding protein 2 with histone deacetylase 2 and of REST with histone deacetylase 1. Surprisingly, methylated DNA immunoprecipitation and hydroxymethylated DNA immunoprecipitation-polymerase chain reaction revealed METH-induced decreased enrichment of 5-methylcytosine and 5-hydroxymethylcytosine at GluA1 and GluA2 promoter sequences. Importantly, the histone deacetylase inhibitor, valproic acid, blocked METH-induced decreased expression of AMPAR and N-methyl-D-aspartate receptor subunits. Finally, valproic acid also attenuated METH-induced decrease H4K16Ac recruitment on AMPAR gene sequences.

      Conclusions

      These observations suggest that histone H4 hypoacetylation may be the main determinant of METH-induced decreased striatal glutamate receptor expression.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bowers M.S.
        • Chen B.T.
        • Bonci A.
        AMPA receptor synaptic plasticity induced by psychostimulants: The past, present, and therapeutic future.
        Neuron. 2010; 67: 11-24
        • Chen B.T.
        • Hopf F.W.
        • Bonci A.
        Synaptic plasticity in the mesolimbic system: Therapeutic implications for substance abuse.
        Ann N Y Acad Sci. 2010; 1187: 129-139
        • Luscher C.
        • Malenka R.C.
        Drug-evoked synaptic plasticity in addiction: From molecular changes to circuit remodeling.
        Neuron. 2011; 69: 650-663
        • Belin D.
        • Everitt B.J.
        Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum.
        Neuron. 2008; 57: 432-441
        • Doyon J.
        • Bellec P.
        • Amsel R.
        • Penhune V.
        • Monchi O.
        • Carrier J.
        • et al.
        Contributions of the basal ganglia and functionally related brain structures to motor learning.
        Behav Brain Res. 2009; 199: 61-75
        • Everitt B.J.
        • Robbins T.W.
        From the ventral to the dorsal striatum: Devolving views of their roles in drug addiction [published online ahead of print February 21].
        Neurosci Biobehav Rev. 2013; (10.1016/j.neubiorev.2013.02.010)
        • Wise R.A.
        Roles for nigrostriatal—not just mesocorticolimbic—dopamine in reward and addiction.
        Trends Neurosci. 2009; 32: 517-524
        • Kalivas P.W.
        • Volkow N.D.
        New medications for drug addiction hiding in glutamatergic neuroplasticity.
        Mol Psychiatry. 2011; 16: 974-986
        • Lu L.
        • Dempsey J.
        • Shaham Y.
        • Hope B.T.
        Differential long-term neuroadaptations of glutamate receptors in the basolateral and central amygdala after withdrawal from cocaine self-administration in rats.
        J Neurochem. 2005; 94: 161-168
        • Conrad K.L.
        • Tseng K.Y.
        • Uejima J.L.
        • Reimers J.M.
        • Heng L.J.
        • Shaham Y.
        • et al.
        Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving.
        Nature. 2008; 454: 118-121
        • Wolf M.E.
        • Ferrario C.R.
        AMPA receptor plasticity in the nucleus accumbens after repeated exposure to cocaine.
        Neurosci Biobehav Rev. 2010; 35: 185-211
        • Kourrich S.
        • Rothwell P.E.
        • Klug J.R.
        • Thomas M.J.
        Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens.
        J Neurosci. 2007; 27: 7921-7928
        • Simoes P.F.
        • Silva A.P.
        • Pereira F.C.
        • Marques E.
        • Milhazes N.
        • Borges F.
        • et al.
        Methamphetamine changes NMDA and AMPA glutamate receptor subunit levels in the rat striatum and frontal cortex.
        Ann N Y Acad Sci. 2008; 1139: 232-241
        • Martin C.
        • Zhang Y.
        Mechanisms of epigenetic inheritance.
        Curr Opin Cell Biol. 2007; 19: 266-272
        • Murr R.
        Interplay between different epigenetic modifications and mechanisms.
        Adv Genet. 2010; 70: 101-141
        • de Ruijter A.J.
        • van Gennip A.H.
        • Caron H.N.
        • Kemp S.
        • van Kuilenburg A.B.
        Histone deacetylases (HDACs): Characterization of the classical HDAC family.
        Biochem J. 2003; 370: 737-749
        • Robison A.J.
        • Nestler E.J.
        Transcriptional and epigenetic mechanisms of addiction.
        Nat Rev Neurosci. 2011; 12: 623-637
        • Krasnova I.N.
        • Cadet J.L.
        Methamphetamine toxicity and messengers of death.
        Brain Res Rev. 2009; 60: 379-407
        • Sulzer D.
        How addictive drugs disrupt presynaptic dopamine neurotransmission.
        Neuron. 2011; 69: 628-649
        • Kuhar M.J.
        • Ritz M.C.
        • Boja J.W.
        The dopamine hypothesis of the reinforcing properties of cocaine.
        Trends Neurosci. 1991; 14: 299-302
        • Ritz M.C.
        • Lamb R.J.
        • Goldberg S.R.
        • Kuhar M.J.
        Cocaine receptors on dopamine transporters are related to self-administration of cocaine.
        Science. 1987; 237: 1219-1223
        • Cho A.K.
        • Melega W.P.
        Patterns of methamphetamine abuse and their consequences.
        J Addict Dis. 2002; 21: 21-34
        • Kramer J.C.
        • Fischman V.S.
        • Littlefield D.C.
        Amphetamine abuse. Pattern and effects of high doses taken intravenously.
        JAMA. 1967; 201: 305-309
        • Cadet J.L.
        • McCoy M.T.
        • Cai N.S.
        • Krasnova I.N.
        • Ladenheim B.
        • Beauvais G.
        • et al.
        Methamphetamine preconditioning alters midbrain transcriptional responses to methamphetamine-induced injury in the rat striatum.
        PLoS One. 2009; 4: e7812
        • Rosenberg G.
        The mechanisms of action of valproate in neuropsychiatric disorders: Can we see the forest for the trees?.
        Cell Mol Life Sci. 2007; 64: 2090-2103
        • Rowley H.L.
        • Marsden C.A.
        • Martin K.F.
        Differential effects of phenytoin and sodium valproate on seizure-induced changes in gamma-aminobutyric acid and glutamate release in vivo.
        Eur J Pharmacol. 1995; 294: 541-546
        • Martin T.A.
        • Jayanthi S.
        • McCoy M.T.
        • Brannock C.
        • Ladenheim B.
        • Garrett T.
        • et al.
        Methamphetamine causes differential alterations in gene expression and patterns of histone acetylation/hypoacetylation in the rat nucleus accumbens.
        PLoS One. 2012; 7: e34236
        • Barrett L.E.
        • Van Bockstaele E.J.
        • Sul J.Y.
        • Takano H.
        • Haydon P.G.
        • Eberwine J.H.
        Elk-1 associates with the mitochondrial permeability transition pore complex in neurons.
        Proc Natl Acad Sci U S A. 2006; 103: 5155-5160
        • Tsankova N.M.
        • Kumar A.
        • Nestler E.J.
        Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures.
        J Neurosci. 2004; 24: 5603-5610
        • Weber M.
        • Davies J.J.
        • Wittig D.
        • Oakeley E.J.
        • Haase M.
        • Lam W.L.
        • Schübeler D.
        Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells.
        Nat Genet. 2005; 37: 853-862
        • Vucetic Z.
        • Kimmel J.
        • Totoki K.
        • Hollenbeck E.
        • Reyes T.M.
        Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes.
        Endocrinology. 2010; 151: 4756-4764
        • Britt J.P.
        • Benaliouad F.
        • McDevitt R.A.
        • Stuber G.D.
        • Wise R.A.
        • Bonci A.
        Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens.
        Neuron. 2012; 76: 790-803
        • Thomas M.J.
        • Beurrier C.
        • Bonci A.
        • Malenka R.C.
        Long-term depression in the nucleus accumbens: A neural correlate of behavioral sensitization to cocaine.
        Nat Neurosci. 2001; 4: 1217-1223
        • Hsia A.Y.
        • Malenka R.C.
        • Nicoll R.A.
        Development of excitatory circuitry in the hippocampus.
        J Neurophysiol. 1998; 79: 2013-2024
        • Chen B.T.
        • Bowers M.S.
        • Martin M.
        • Hopf F.W.
        • Guillory A.M.
        • Carelli R.M.
        • et al.
        Cocaine but not natural reward self-administration nor passive cocaine infusion produces persistent LTP in the VTA.
        Neuron. 2008; 59: 288-297
        • Ungless M.A.
        • Whistler J.L.
        • Malenka R.C.
        • Bonci A.
        Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons.
        Nature. 2001; 411: 583-587
        • Covington 3rd, H.E.
        • Maze I.
        • Sun H.
        • Bomze H.M.
        • DeMaio K.D.
        • Wu E.Y.
        • et al.
        A role for repressive histone methylation in cocaine-induced vulnerability to stress.
        Neuron. 2011; 71: 656-670
        • Kennedy P.J.
        • Feng J.
        • Robison A.J.
        • Maze I.
        • Badimon A.
        • Mouzon E.
        • et al.
        Class I HDAC inhibition blocks cocaine-induced plasticity by targeted changes in histone methylation.
        Nat Neurosci. 2013; 16: 434-440
        • Rogge G.A.
        • Wood M.A.
        The role of histone acetylation in cocaine-induced neural plasticity and behavior.
        Neuropsychopharmacology. 2013; 38: 94-110
        • Dion M.F.
        • Altschuler S.J.
        • Wu L.F.
        • Rando O.J.
        Genomic characterization reveals a simple histone H4 acetylation code.
        Proc Natl Acad Sci U S A. 2005; 102: 5501-5506
        • Henriksen P.
        • Wagner S.A.
        • Weinert B.T.
        • Sharma S.
        • Bacinskaja G.
        • Rehman M.
        • et al.
        Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae.
        Mol Cell Proteomics. 2012; 11: 1510-1522
        • Rundlett S.E.
        • Carmen A.A.
        • Suka N.
        • Turner B.M.
        • Grunstein M.
        Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3.
        Nature. 1998; 392: 831-835
        • Vettese-Dadey M.
        • Grant P.A.
        • Hebbes T.R.
        • Crane- Robinson C.
        • Allis C.D.
        • Workman J.L.
        Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro.
        EMBO J. 1996; 15: 2508-2518
        • Vaquero A.
        • Sternglanz R.
        • Reinberg D.
        NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs.
        Oncogene. 2007; 26: 5505-5520
        • Renthal W.
        • Kumar A.
        • Xiao G.
        • Wilkinson M.
        • Covington 3rd, H.E.
        • Maze I.
        • et al.
        Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins.
        Neuron. 2009; 62: 335-348
        • Bithell A.
        REST: Transcriptional and epigenetic regulator.
        Epigenomics. 2011; 3: 47-58
        • Calderone A.
        • Jover T.
        • Noh K.M.
        • Tanaka H.
        • Yokota H.
        • Lin Y.
        • et al.
        Ischemic insults derepress the gene silencer REST in neurons destined to die.
        J Neurosci. 2003; 23: 2112-2121
        • Bai G.
        • Zhuang Z.
        • Liu A.
        • Chai Y.
        • Hoffman P.W.
        The role of the RE1 element in activation of the NR1 promoter during neuronal differentiation.
        J Neurochem. 2003; 86: 992-1005
        • Andres M.E.
        • Burger C.
        • Peral-Rubio M.J.
        • Battaglioli E.
        • Anderson M.E.
        • Grimes J.
        • et al.
        CoREST: A functional corepressor required for regulation of neural-specific gene expression.
        Proc Natl Acad Sci U S A. 1999; 96: 9873-9878
        • Abrajano J.J.
        • Qureshi I.A.
        • Gokhan S.
        • Zheng D.
        • Bergman A.
        • Mehler M.F.
        REST and CoREST modulate neuronal subtype specification, maturation and maintenance.
        PLoS One. 2009; 4: e7936
        • Zhang F.
        • Wang S.
        • Gan L.
        • Vosler P.S.
        • Gao Y.
        • Zigmond M.J.
        • Chen J.
        Protective effects and mechanisms of sirtuins in the nervous system.
        Prog Neurobiol. 2011; 95: 373-395
        • Suzuki M.M.
        • Bird A.
        DNA methylation landscapes: Provocative insights from epigenomics.
        Nat Rev Genet. 2008; 9: 465-476
        • Denis H.
        • Ndlovu M.N.
        • Fuks F.
        Regulation of mammalian DNA methyltransferases: A route to new mechanisms.
        EMBO Rep. 2011; 12: 647-656
        • Kar S.
        • Deb M.
        • Sengupta D.
        • Shilpi A.
        • Parbin S.
        • Torrisani J.
        • et al.
        An insight into the various regulatory mechanisms modulating human DNA methyltransferase 1 stability and function.
        Epigenetics. 2012; 7: 994-1007
        • Chedin F.
        The DNMT3 family of mammalian de novo DNA methyltransferases.
        Prog Mol Biol Transl Sci. 2011; 101: 255-285
        • Jones P.L.
        • Veenstra G.J.
        • Wade P.A.
        • Vermaak D.
        • Kass S.U.
        • Landsberger N.
        • et al.
        Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription.
        Nat Genet. 1998; 19: 187-191
        • Young J.I.
        • Hong E.P.
        • Castle J.C.
        • Crespo-Barreto J.
        • Bowman A.B.
        • Rose M.F.
        • et al.
        Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2.
        Proc Natl Acad Sci U S A. 2005; 102: 17551-17558
        • Kimura H.
        • Shiota K.
        Methyl-CpG-binding protein, MeCP2, is a target molecule for maintenance DNA methyltransferase, Dnmt1.
        J Biol Chem. 2003; 278: 4806-4812
        • Adams V.H.
        • McBryant S.J.
        • Wade P.A.
        • Woodcock C.L.
        • Hansen J.C.
        Intrinsic disorder and autonomous domain function in the multifunctional nuclear protein, MeCP2.
        J Biol Chem. 2007; 282: 15057-15064
        • Hansen J.C.
        • Ghosh R.P.
        • Woodcock C.L.
        Binding of the Rett syndrome protein, MeCP2, to methylated and unmethylated DNA and chromatin.
        IUBMB Life. 2010; 62: 732-738
        • Meehan R.R.
        • Lewis J.D.
        • Bird A.P.
        Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA.
        Nucleic Acids Res. 1992; 20: 5085-5092
        • Feng J.
        • Fan G.
        The role of DNA methylation in the central nervous system and neuropsychiatric disorders.
        Int Rev Neurobiol. 2009; 89: 67-84
        • Nan X.
        • Ng H.H.
        • Johnson C.A.
        • Laherty C.D.
        • Turner B.M.
        • Eisenman R.N.
        • Bird A.
        Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex.
        Nature. 1998; 393: 386-389
        • Satta R.
        • Maloku E.
        • Zhubi A.
        • Pibiri F.
        • Hajos M.
        • Costa E.
        • Guidotti A.
        Nicotine decreases DNA methyltransferase 1 expression and glutamic acid decarboxylase 67 promoter methylation in GABAergic interneurons.
        Proc Natl Acad Sci U S A. 2008; 105: 16356-16361
        • Dong E.
        • Nelson M.
        • Grayson D.R.
        • Costa E.
        • Guidotti A.
        Clozapine and sulpiride but not haloperidol or olanzapine activate brain DNA demethylation.
        Proc Natl Acad Sci U S A. 2008; 105: 13614-13619
        • Ito S.
        • Shen L.
        • Dai Q.
        • Wu S.C.
        • Collins L.B.
        • Swenberg J.A.
        • et al.
        Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine.
        Science. 2011; 333: 1300-1303
        • Nabel C.S.
        • Manning S.A.
        • Kohli R.M.
        The curious chemical biology of cytosine: Deamination, methylation, and oxidation as modulators of genomic potential.
        ACS Chem Biol. 2012; 7: 20-30
        • Guo J.U.
        • Su Y.
        • Zhong C.
        • Ming G.L.
        • Song H.
        Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain.
        Cell. 2011; 145: 423-434
        • Kriaucionis S.
        • Heintz N.
        The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain.
        Science. 2009; 324: 929-930
        • Szulwach K.E.
        • Li X.
        • Li Y.
        • Song C.X.
        • Wu H.
        • Dai Q.
        • et al.
        5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging.
        Nat Neurosci. 2011; 14: 1607-1616
        • Tahiliani M.
        • Koh K.P.
        • Shen Y.
        • Pastor W.A.
        • Bandukwala H.
        • Brudno Y.
        • et al.
        Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1.
        Science. 2009; 324: 930-935
        • Phiel C.J.
        • Zhang F.
        • Huang E.Y.
        • Guenther M.G.
        • Lazar M.A.
        • Klein P.S.
        Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen.
        J Biol Chem. 2001; 276: 36734-36741
        • Nalivaeva N.N.
        • Belyaev N.D.
        • Turner A.J.
        Sodium valproate: An old drug with new roles.
        Trends Pharmacol Sci. 2009; 30: 509-514
        • Kazahaya Y.
        • Akimoto K.
        • Otsuki S.
        Subchronic methamphetamine treatment enhances methamphetamine- or cocaine-induced dopamine efflux in vivo.
        Biol Psychiatry. 1989; 25: 903-912
        • Cadet J.L.
        • Jayanthi S.
        • McCoy M.T.
        • Beauvais G.
        • Cai N.S.
        Dopamine D1 receptors, regulation of gene expression in the brain, and neurodegeneration.
        CNS Neurol Disord Drug Targets. 2010; 9: 526-538
        • Cull-Candy S.G.
        • Leszkiewicz D.N.
        Role of distinct NMDA receptor subtypes at central synapses.
        Sci STKE. 2004; 2004: re16
        • Madden K.
        NMDA receptor antagonists and glycine site NMDA antagonists.
        Curr Med Res Opin. 2002; 18: s27-s31
        • Motawaj M.
        • Arrang J.M.
        Ciproxifan, a histamine H-receptor antagonist / inverse agonist, modulates methamphetamine-induced sensitization in mice.
        Eur J Neurosci. 2011; 33: 1197-1204
        • Yamamoto H.
        • Kitamura N.
        • Lin X.H.
        • Ikeuchi Y.
        • Hashimoto T.
        • Shirakawa O.
        • Maeda K.
        Differential changes in glutamatergic transmission via N-methyl-D-aspartate receptors in the hippocampus and striatum of rats behaviourally sensitized to methamphetamine.
        Int J Neuropsychopharmacol. 1999; 2: 155-163
        • Jenuwein T.
        • Allis C.D.
        Translating the histone code.
        Science. 2001; 293: 1074-1080
        • Braunstein M.
        • Sobel R.E.
        • Allis C.D.
        • Turner B.M.
        • Broach J.R.
        Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern.
        Mol Cell Biol. 1996; 16: 4349-4356
        • Wolffe A.P.
        Histone deacetylase: A regulator of transcription.
        Science. 1996; 272: 371-372
        • Graff J.
        • Rei D.
        • Guan J.S.
        • Wang W.Y.
        • Seo J.
        • Hennig K.M.
        • et al.
        An epigenetic blockade of cognitive functions in the neurodegenerating brain.
        Nature. 2012; 483: 222-226
        • Guan J.S.
        • Haggarty S.J.
        • Giacometti E.
        • Dannenberg J.H.
        • Joseph N.
        • Gao J.
        • et al.
        HDAC2 negatively regulates memory formation and synaptic plasticity.
        Nature. 2009; 459: 55-60
        • Miller K.M.
        • Tjeertes J.V.
        • Coates J.
        • Legube G.
        • Polo S.E.
        • Britton S.
        • Jackson S.P.
        Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining.
        Nat Struct Mol Biol. 2010; 17: 1144-1151
        • Vaquero A.
        • Scher M.B.
        • Lee D.H.
        • Sutton A.
        • Cheng H.L.
        • Alt F.W.
        • et al.
        SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis.
        Genes Dev. 2006; 20: 1256-1261
        • Kramer O.H.
        • Zhu P.
        • Ostendorff H.P.
        • Golebiewski M.
        • Tiefenbach J.
        • Peters M.A.
        • et al.
        The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2.
        EMBO J. 2003; 22: 3411-3420
        • Barbetti V.
        • Gozzini A.
        • Cheloni G.
        • Marzi I.
        • Fabiani E.
        • Santini V.
        • et al.
        Time- and residue-specific differences in histone acetylation induced by VPA and SAHA in AML1/ETO-positive leukemia cells.
        Epigenetics. 2013; 8: 210-219
        • Bartels M.
        • Geest C.R.
        • Bierings M.
        • Buitenhuis M.
        • Coffer P.J.
        Histone deacetylase inhibition modulates cell fate decisions during myeloid differentiation.
        Haematologica. 2010; 95: 1052-1060
        • Larsson P.
        • Ulfhammer E.
        • Magnusson M.
        • Bergh N.
        • Lunke S.
        • El-Osta A.
        • et al.
        Role of histone acetylation in the stimulatory effect of valproic acid on vascular endothelial tissue-type plasminogen activator expression.
        PLoS One. 2012; 7: e31573
        • Monti B.
        • Polazzi E.
        • Contestabile A.
        Biochemical, molecular and epigenetic mechanisms of valproic acid neuroprotection.
        Curr Mol Pharmacol. 2009; 2: 95-109
        • Myers S.J.
        • Peters J.
        • Huang Y.
        • Comer M.B.
        • Barthel F.
        • Dingledine R.
        Transcriptional regulation of the GluR2 gene: Neural-specific expression, multiple promoters, and regulatory elements.
        J Neurosci. 1998; 18: 6723-6739
        • Bai G.
        • Norton D.D.
        • Prenger M.S.
        • Kusiak J.W.
        Single-stranded DNA-binding proteins and neuron-restrictive silencer factor participate in cell-specific transcriptional control of the NMDAR1 gene.
        J Biol Chem. 1998; 273: 1086-1091
        • Lunyak V.V.
        • Burgess R.
        • Prefontaine G.G.
        • Nelson C.
        • Sze S.H.
        • Chenoweth J.
        • et al.
        Corepressor-dependent silencing of chromosomal regions encoding neuronal genes.
        Science. 2002; 298: 1747-1752
        • Huang Y.
        • Doherty J.J.
        • Dingledine R.
        Altered histone acetylation at glutamate receptor 2 and brain-derived neurotrophic factor genes is an early event triggered by status epilepticus.
        J Neurosci. 2002; 22: 8422-8428
        • Abrajano J.J.
        • Qureshi I.A.
        • Gokhan S.
        • Molero A.E.
        • Zheng D.
        • Bergman A.
        • Mehler M.F.
        Corepressor for element-1-silencing transcription factor preferentially mediates gene networks underlying neural stem cell fate decisions.
        Proc Natl Acad Sci U S A. 2010; 107: 16685-16690
        • Ballas N.
        • Grunseich C.
        • Lu D.D.
        • Speh J.C.
        • Mandel G.
        REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis.
        Cell. 2005; 121: 645-657
        • Amir R.E.
        • Van den Veyver I.B.
        • Wan M.
        • Tran C.Q.
        • Francke U.
        • Zoghbi H.Y.
        Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2.
        Nat Genet. 1999; 23: 185-188
        • Marsman J.
        • Horsfield J.A.
        Long distance relationships: Enhancer-promoter communication and dynamic gene transcription.
        Biochim Biophys Acta. 2012; 1819: 1217-1227
        • Ong C.T.
        • Corces V.G.
        Enhancer function: New insights into the regulation of tissue-specific gene expression.
        Nat Rev Genet. 2011; 12: 283-293
        • Bird A.
        DNA methylation patterns and epigenetic memory.
        Genes Dev. 2002; 16: 6-21
        • Georgel P.T.
        • Horowitz-Scherer R.A.
        • Adkins N.
        • Woodcock C.L.
        • Wade P.A.
        • Hansen J.C.
        Chromatin compaction by human MeCP2. Assembly of novel secondary chromatin structures in the absence of DNA methylation.
        J Biol Chem. 2003; 278: 32181-32188
        • Yasui D.H.
        • Peddada S.
        • Bieda M.C.
        • Vallero R.O.
        • Hogart A.
        • Nagarajan R.P.
        • et al.
        Integrasted epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes.
        Proc Natl Acad Sci U S A. 2007; 104: 19416-19421