Advertisement

Atomoxetine Decreases Vulnerability to Develop Compulsivity in High Impulsive Rats

  • Solène Ansquer
    Affiliations
    Institut National de la Santé et de la Recherche Médicale (INSERM) U1084-LNEC Experimental and Clinical Neurosciences Laboratory, Poitiers, France

    Team Psychobiology of Compulsive Disorders, University of Poitiers, Poitiers, France

    Service de Neurologie de l'Hôpital de Poitiers, Poitiers, France
    Search for articles by this author
  • Aude Belin-Rauscent
    Affiliations
    Institut National de la Santé et de la Recherche Médicale (INSERM) U1084-LNEC Experimental and Clinical Neurosciences Laboratory, Poitiers, France

    Team Psychobiology of Compulsive Disorders, University of Poitiers, Poitiers, France

    INSERM European Associated Laboratory Psychobiology of Compulsive Habits, Cambridge, United Kingdom

    INSERM CIC-0802, Poitiers, France
    Search for articles by this author
  • Emilie Dugast
    Affiliations
    Institut National de la Santé et de la Recherche Médicale (INSERM) U1084-LNEC Experimental and Clinical Neurosciences Laboratory, Poitiers, France

    Team Psychobiology of Compulsive Disorders, University of Poitiers, Poitiers, France

    INSERM European Associated Laboratory Psychobiology of Compulsive Habits, Cambridge, United Kingdom
    Search for articles by this author
  • Théo Duran
    Affiliations
    Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom

    Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
    Search for articles by this author
  • Isabelle Benatru
    Affiliations
    Service de Neurologie de l'Hôpital de Poitiers, Poitiers, France

    CNRS GDR 3557 “Institut de Psychiatrie”, Poitiers, France
    Search for articles by this author
  • Adam C. Mar
    Affiliations
    Hôpital Sainte Anne, Paris, France; Institut des Neurosciences de Grenoble-CR Inserm U.836; Université Joseph Fourier-Site Santé La Tronche-CHU Grenoble, Grenoble, France
    Search for articles by this author
  • Jean-Luc Houeto
    Affiliations
    Institut National de la Santé et de la Recherche Médicale (INSERM) U1084-LNEC Experimental and Clinical Neurosciences Laboratory, Poitiers, France

    Team Psychobiology of Compulsive Disorders, University of Poitiers, Poitiers, France

    INSERM European Associated Laboratory Psychobiology of Compulsive Habits, Cambridge, United Kingdom

    CNRS GDR 3557 “Institut de Psychiatrie”, Poitiers, France
    Search for articles by this author
  • David Belin
    Correspondence
    Address correspondence to David Belin, Ph.D., INSERM European Associated Laboratory Psychobiology of Compulsive Habits, Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
    Affiliations
    Institut National de la Santé et de la Recherche Médicale (INSERM) U1084-LNEC Experimental and Clinical Neurosciences Laboratory, Poitiers, France

    Team Psychobiology of Compulsive Disorders, University of Poitiers, Poitiers, France

    INSERM European Associated Laboratory Psychobiology of Compulsive Habits, Cambridge, United Kingdom

    INSERM CIC-0802, Poitiers, France
    Search for articles by this author
Published:November 18, 2013DOI:https://doi.org/10.1016/j.biopsych.2013.09.031

      Background

      The factors contributing to the development and severity of obsessive-compulsive spectrum disorders such as obsessive-compulsive disorder, Tourette’s syndrome, pathological gambling, and addictions remain poorly understood, limiting the development of therapeutic and preventive strategies. Recent evidence indicates that impulse-control deficits may contribute to the severity of compulsivity in several of these disorders. This suggests that impulsivity may be a transnosological endophenotype of vulnerability to compulsivity. However, the precise nature of the link between impulsivity and compulsivity in anxiety-related compulsive disorders remains unknown.

      Methods

      We investigated the relationship between impulsivity and the development of a compulsive behavior in rats, which captures the hallmarks of compulsivity as defined in the DSM-IV—namely, that it is maladaptive, excessive, repetitive, and anxiolytic.

      Results

      We demonstrate that a high-impulsivity trait, as measured in the five-choice serial reaction time task, predicts an increased propensity to develop compulsivity as measured in a schedule-induced polydipsia procedure. Trait impulsivity and compulsivity were nonlinearly related. This impulsivity–compulsivity relationship was lost after the development of compulsivity or under chronic treatment with atomoxetine, a noradrenergic reuptake inhibitor used to treat attention-deficit/hyperactivity disorder. Atomoxetine treatment both decreased impulsivity and prevented the development of compulsivity in high-impulsive animals.

      Conclusions

      These observations provide insight into the reciprocal influence of impulsivity and compulsivity in compulsive disorders and suggest that atomoxetine may be a useful treatment for patients suffering from obsessive-compulsive spectrum disorders with high impulsivity.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Menzies L.
        • Achard S.
        • Chamberlain S.R.
        • Fineberg N.
        • Chen C.H.
        • del Campo N.
        • et al.
        Neurocognitive endophenotypes of obsessive-compulsive disorder.
        Brain. 2007; 130: 3223-3236
        • Robbins T.W.
        • Gillan C.M.
        • Smith D.G.
        • de Wit S.
        • Ersche K.D.
        Neurocognitive endophenotypes of impulsivity and compulsivity: Towards dimensional psychiatry.
        Trends Cogn Sci. 2012; 16: 81-91
        • Fernando A.B.
        • Robbins T.W.
        Animal models of neuropsychiatric disorders.
        Annu Rev Clin Psychol. 2011; 7: 39-61
        • Fernandez-Serrano M.J.
        • Perales J.C.
        • Moreno-Lopez L.
        • Perez-Garcia M.
        • Verdejo-Garcia A.
        Neuropsychological profiling of impulsivity and compulsivity in cocaine dependent individuals.
        Psychopharmacology (Berl). 2012; 219: 673-683
        • Fernandez-Serrano M.J.
        • Cesar Peraleslopez J.
        • Moreno-Lopez L.
        • Santos-Ruiz A.
        • Perez-Garcia M.
        • Verdejogarcia A.
        Impulsivity and compulsivity in cocaine dependent individuals [in Spanish].
        Adicciones. 2012; 24: 105-113
        • Wilens T.E.
        Attention-deficit/hyperactivity disorder and the substance use disorders: The nature of the relationship, subtypes at risk, and treatment issues.
        Psychiatr Clin North Am. 2012; 27: 283-301
        • Wilens T.E.
        Impact of ADHD and its treatment on substance abuse in adults.
        J Clin Psychiatry. 2004; 65: 38-45
        • Brook D.W.
        • Brook J.S.
        • Zhang C.
        • Koppel J.
        Association between attention-deficit/hyperactivity disorder in adolescence and substance use disorders in adulthood.
        Arch Pediatr Adolesc Med. 2010; 164: 930-934
        • Bari A.
        • Dalley J.W.
        • Robbins T.W.
        The application of the 5-choice serial reaction time task for the assessment of visual attentional processes and impulse control in rats.
        Nat Protoc. 2008; 3: 759-767
        • Robbins T.W.
        The 5-choice serial reaction time task: Behavioural pharmacology and functional neurochemistry.
        Psychopharmacology. 2002; 163: 362-380
        • Belin D.
        • Mar A.
        • Dalley J.W.
        • Robbins T.W.
        • Everitt B.J.
        High impulsivity predicts the switch to compulsive cocaine-taking.
        Science. 2008; 320: 1352-1355
        • Economidou D.
        • Dalley J.W.
        • Everitt B.J.
        Selective norepinephrine reuptake inhibition by atomoxetine prevents cue-induced heroin and cocaine seeking.
        Biol Psychiatry. 2011; 69: 266-274
        • Fernando A.B.
        • Economidou D.
        • Theobald D.E.
        • Zou M.F.
        • Newman A.H.
        • Spoelder M.
        • et al.
        Modulation of high impulsivity and attentional performance in rats by selective direct and indirect dopaminergic and noradrenergic receptor agonists.
        Psychopharmacology (Berl). 2012; 219: 341-352
        • Economidou D.
        • Pelloux Y.
        • Robbins T.W.
        • Dalley J.W.
        • Everitt B.J.
        High impulsivity predicts relapse to cocaine-seeking after punishment-induced abstinence.
        Biol Psychiatry. 2009; 65: 851-856
        • Everitt B.J.
        • Belin D.
        • Economidou D.
        • Pelloux Y.
        • Dalley J.W.
        • Robbins T.W.
        Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction.
        Philos Trans R Soc Lond B Biol Sci. 2008; 363: 3125-3135
        • Evenden J.L.
        Varieties of impulsivity.
        Psychopharmacology. 1999; 146: 348-361
        • Belin D.
        • Besson M.
        • Bari A.
        • Dalley J.W.
        Multi-disciplinary investigations of impulsivity in animal models of attention-deficit hyperactivity disorder and drug addiction vulnerability.
        in: Ganson S. Endophenotypes of Psychiatric and Neurodegenerative Disorders in Rodent Models. Transworld Research Network, Kerala, India2009: 105-134
        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders, 4th ed., text revision (DSM-IV-TR).
        American Psychiatric Association, Washington, DC2000
        • Brett L.P.
        • Levine S.
        Schedule-induced polydipsia suppresses pituitary-adrenal activity in rats.
        J Comp Physiol Psychol. 1979; 93: 946-956
        • Lopez-Grancha M.
        • Lopez-Crespo G.
        • Sanchez-Amate M.C.
        • Flores P.
        Individual differences in schedule-induced polydipsia and the role of gabaergic and dopaminergic systems.
        Psychopharmacology (Berl). 2008; 197: 487-498
        • Platt B.
        • Beyer C.E.
        • Schechter L.E.
        • Rosenzweig-Lipson S.
        Schedule-induced polydipsia: A rat model of obsessive-compulsive disorder.
        Curr Protoc Neurosci. 2008; (Chapter 9:Unit 9.27)
        • Pellon R.
        • Ruiz A.
        • Moreno M.
        • Claro F.
        • Ambrosio E.
        • Flores P.
        Individual differences in schedule-induced polydipsia: Neuroanatomical dopamine divergences.
        Behav Brain Res. 2011; 217: 195-201
        • Moreno M.
        • Flores P.
        Schedule-induced polydipsia as a model of compulsive behavior: neuropharmacological and neuroendocrine bases.
        Psychopharmacology (Berl). 2012; 219: 647-659
        • Boulougouris V.
        • Chamberlain S.R.
        • Robbins T.W.
        Cross-species models of OCD spectrum disorders.
        Psychiatry Res. 2009; 170: 15-21
        • Fineberg N.A.
        • Chamberlain S.R.
        • Hollander E.
        • Boulougouris V.
        • Robbins T.W.
        Translational approaches to obsessive-compulsive disorder: From animal models to clinical treatment.
        Br J Pharmacol. 2011; 164: 1044-1061
        • Albelda N.
        • Joel D.
        Current animal models of obsessive compulsive disorder: An update.
        Neuroscience. 2012; 211: 83-106
        • Albelda N.
        • Joel D.
        Animal models of obsessive-compulsive disorder: Exploring pharmacology and neural substrates.
        Neurosci Biobehav Rev. 2012; 36: 47-63
        • Tazi A.
        • Dantzer R.
        • Mormede P.
        • Le Moal M.
        Pituitary-adrenal correlates of schedule-induced polydipsia and wheel running in rats.
        Behav Brain Res. 1986; 19: 249-256
        • Brett L.P.
        • Patterson J.
        • Levine S.
        Adjunctive drinking and the pituitary-adrenal response: Effects of prior aversive stimulation (preshock).
        Physiol Behav. 1982; 29: 219-223
        • Dantzer R.
        • Terlouw C.
        • Mormede P.
        • Le Moal M.
        Schedule-induced polydipsia experience decreases plasma corticosterone levels but increases plasma prolactin levels.
        Physiol Behav. 1988; 43: 275-279
        • Tazi A.
        • Dantzer R.
        • Le Moal M.
        Prediction and control of food rewards modulate endogenous pain inhibitory systems.
        Behav Brain Res. 1987; 23: 197-204
        • Daniel M.L.
        • Belin-Rauscent A.
        • Jaafari N.
        • Belin D.
        Role of the anterior insular cortex in inter-individual propensity to develop compulsive behaviour.
        European Behavioural Neuroscience Meeting, Amsterdam. 2011;
        • Millet B.
        • Dondaine T.
        • Reymann J.M.
        • Bourguignon A.
        • Naudet F.
        • Jaafari N.
        • et al.
        Obsessive compulsive disorder networks: Positron emission tomography and neuropsychology provide new insights.
        PLoS One. 2013; 8: e53241
        • Remijnse P.L.
        • van den Heuvel O.A.
        • Nielen M.M.
        • Vriend C.
        • Hendriks G.J.
        • Hoogendijk W.J.
        • et al.
        Cognitive inflexibility in obsessive-compulsive disorder and major depression is associated with distinct neural correlates.
        PLoS One. 2013; 8: e59600
        • Marsh R.
        • Horga G.
        • Parashar N.
        • Wang A.
        • Peterson B.S.
        • Simpson H.B.
        Altered activation in fronto-striatal circuits during sequential processing of conflict in unmedicated adults with obsessive-compulsive disorder [published online ahead of print March 12].
        Biol Psychiatry. 2013;
        • Besson M.
        • Pelloux Y.
        • Dilleen R.
        • Theobald D.E.
        • Lyon A.
        • Belin-Rauscent A.
        • et al.
        Cocaine modulation of frontostriatal expression of Zif268, D2, and 5-HT2c receptors in high and low impulsive rats.
        Neuropsychopharmacology. 2013; 38: 1963-1973
        • McNamara R.
        • Dalley J.W.
        • Robbins T.W.
        • Everitt B.J.
        • Belin D.
        Trait-like impulsivity does not predict escalation of heroin self-administration in the rat.
        Psychopharmacology (Berl). 2010; 212: 453-464
        • Dalley J.W.
        • Fryer T.
        • Brichard L.
        • Robinson E.
        • Theobald D.
        • Laane K.
        • et al.
        Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement.
        Science. 2007; 315: 1267-1270
        • Besson M.
        • Belin D.
        • McNamara R.
        • Theobald D.E.
        • Castel A.
        • Beckett V.L.
        • et al.
        Dissociable control of impulsivity in rats by dopamine D2/3 receptors in the core and shell subregions of the nucleus accumbens.
        Neuropsychopharmacology. 2009; 35: 560-569
        • Moreno M.
        • Gutierrez-Ferre V.E.
        • Ruedas L.
        • Campa L.
        • Sunol C.
        • Flores P.
        Poor inhibitory control and neurochemical differences in high compulsive drinker rats selected by schedule-induced polydipsia.
        Psychopharmacology (Berl). 2012; 219: 661-672
        • Bari A.
        • Robbins T.W.
        Inhibition and impulsivity: Behavioral and neural basis of response control.
        Prog Neurobiol. 2013; 108: 44-79
        • Robinson E.S.
        • Eagle D.M.
        • Economidou D.
        • Theobald D.E.
        • Mar A.C.
        • Murphy E.R.
        • et al.
        Behavioural characterisation of high impulsivity on the 5-choice serial reaction time task: Specific deficits in “waiting” versus “stopping.”.
        Behav Brain Res. 2009; 196: 310-316
        • Levine R.
        • Levine S.
        Role of the pituitary-adrenal hormones in the acquisition of schedule-induced polydipsia.
        Behav Neurosci. 1989; 103: 621-637
        • Cirulli F.
        • van Oers H.
        • De Kloet E.R.
        • Levine S.
        Differential influence of corticosterone and dexamethasone on schedule-induced polydipsia in adrenalectomized rats.
        Behav Brain Res. 1994; 65: 33-39
        • Pellon R.
        • Ruiz A.
        • Lamas E.
        • Rodriguez C.
        Pharmacological analysis of the effects of benzodiazepines on punished schedule-induced polydipsia in rats.
        Behav Pharmacol. 2007; 18: 81-87
        • DeCarolis N.A.
        • Myracle A.
        • Erbach J.
        • Glowa J.
        • Flores P.
        • Riley A.L.
        Strain-dependent differences in schedule-induced polydipsia: An assessment in Lewis and Fischer rats.
        Pharmacol Biochem Behav. 2003; 74: 755-763
        • Rex A.
        • Voigt J.P.
        • Fink H.
        Behavioral and neurochemical differences between Fischer 344 and Harlan-Wistar rats raised identically.
        Behav Genet. 1999; 29: 187-192
        • Rivest S.
        • Rivier C.
        Stress and interleukin-1 beta-induced activation of c-fos, NGFI-B and CRF gene expression in the hypothalamic PVN: Comparison between Sprague-Dawley, Fisher-344 and Lewis rats.
        J Neuroendocrinol. 1994; 6: 101-117
        • Molander A.C.
        • Mar A.
        • Norbury A.
        • Steventon S.
        • Moreno M.
        • Caprioli D.
        • et al.
        High impulsivity predicting vulnerability to cocaine addiction in rats: Some relationship with novelty preference but not novelty reactivity, anxiety or stress.
        Psychopharmacology (Berl). 2011; 215: 721-731
        • Potenza M.N.
        Impulsivity and compulsivity in pathological gambling and obsessive-compulsive disorder.
        Rev Bras Psiquiatr. 2007; 29: 105-106
        • Robinson E.
        • Eagle D.
        • Mar A.
        • Bari A.
        • Banerjee G.
        • Jiang X.
        • et al.
        Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on three distinct forms of impulsivity in the rat.
        Neuropsychopharmacology. 2008; 33: 1028-1037
        • Bari A.
        • Aston-Jones G.
        Atomoxetine modulates spontaneous and sensory-evoked discharge of locus coeruleus noradrenergic neurons.
        Neuropharmacology. 2013; 64: 53-64
        • Bari A.
        • Robbins T.W.
        Noradrenergic versus dopaminergic modulation of impulsivity, attention and monitoring behaviour in rats performing the stop-signal task: Possible relevance to ADHD.
        Psychopharmacology (Berl). 2013; 230: 89-111
        • Tung C.S.
        • Lu C.C.
        • Liu Y.P.
        • Tseng C.J.
        • Yin T.H.
        Schedule-induced polydipsia increased both mesotelencephalic-dopaminergic and pontine-noradrenergic activities in the rat brain.
        Chin J Physiol. 1995; 38: 57-63
        • Economidou D.
        • Theobald D.E.
        • Robbins T.W.
        • Everitt B.J.
        • Dalley J.W.
        Norepinephrine and dopamine modulate impulsivity on the five-choice serial reaction time task through opponent actions in the shell and core sub-regions of the nucleus accumbens.
        Neuropsychopharmacology. 2012; 37: 2057-2066
        • Berridge C.W.
        • Stratford T.L.
        • Foote S.L.
        • Kelley A.E.
        Distribution of dopamine beta-hydroxylase-like immunoreactive fibers within the shell subregion of the nucleus accumbens.
        Synapse. 1997; 27: 230-241
        • Delfs J.M.
        • Zhu Y.
        • Druhan J.P.
        • Aston-Jones G.S.
        Origin of noradrenergic afferents to the shell subregion of the nucleus accumbens: anterograde and retrograde tract-tracing studies in the rat.
        Brain Res. 1998; 806: 127-140
        • Mizoguchi N.
        • Saigusa T.
        • Aono Y.
        • Sekino T.
        • Takada K.
        • Oi Y.
        • et al.
        The reboxetine-induced increase of accumbal dopamine efflux is inhibited by l-propranolol: A microdialysis study with freely moving rats.
        Eur J Pharmacol. 2008; 601: 94-98
        • van Dongen Y.C.
        • Deniau J.M.
        • Pennartz C.M.
        • Galis-de Graaf Y.
        • Voorn P.
        • Thierry A.M.
        • et al.
        Anatomical evidence for direct connections between the shell and core subregions of the rat nucleus accumbens.
        Neuroscience. 2005; 136: 1049-1071
        • Groenewegen H.J.
        • Wright C.I.
        • Beijer A.V.
        • Voorn P.
        Convergence and segregation of ventral striatal inputs and outputs.
        Ann N Y Acad Sci. 1999; 877: 49-63
        • Diergaarde L.
        • Pattij T.
        • Poortvliet I.
        • Hogenboom F.
        • Devries W.
        • Schoffelmeer A.
        • et al.
        Impulsive choice and impulsive action predict vulnerability to distinct stages of nicotine seeking in rats.
        Biol Psychiatry. 2008; 63: 301-308
        • Jupp B.
        • Caprioli D.
        • Saigal N.
        • Reverte I.
        • Shrestha S.
        • Cumming P.
        • et al.
        Dopaminergic and GABA-ergic markers of impulsivity in rats: Evidence for anatomical localisation in ventral striatum and prefrontal cortex.
        Eur J Neurosci. 2013; 37: 1519-1528
        • Weissenborn R.
        • Blaha C.D.
        • Winn P.
        • Phillips A.G.
        Schedule-induced polydipsia and the nucleus accumbens: Electrochemical measurements of dopamine efflux and effects of excitotoxic lesions in the core.
        Behav Brain Res. 1996; 75: 147-158
        • Robbins T.W.
        • Koob G.F.
        Selective disruption of displacement behaviour by lesions of the mesolimbic dopamine system.
        Nature. 1980; 285: 409-412
        • Robbins T.W.
        • Roberts D.C.
        • Koob G.F.
        Effects of d-amphetamine and apomorphine upon operant behavior and schedule-induced licking in rats with 6-hydroxydopamine-induced lesions of the nucleus accumbens.
        J Pharmacol Exp Ther. 1983; 224: 662-673
        • Caprioli D.
        • Hong Y.T.
        • Sawiak S.J.
        • Ferrari V.
        • Williamson D.J.
        • Jupp B.
        • et al.
        Baseline-dependent effects of cocaine pre-exposure on impulsivity and D(2/3) receptor availability in the rat striatum: Possible relevance to the attention-deficit hyperactivity syndrome.
        Neuropsychopharmacology. 2013; 38: 1460-1471
        • Dalley J.W.
        • Mar A.
        • Economidou D.
        • Robbins T.W.
        Neurobehavioral mechanisms of impulsivity: Fronto-striatal systems and functional neurochemistry.
        Pharmacol Biochem Behav. 2008; 90: 250-260
        • Dalley J.W.
        • Everitt B.J.
        • Robbins T.W.
        Impulsivity, compulsivity, and top-down cognitive control.
        Neuron. 2011; 69: 680-694
        • Piazza P.V.
        • Deminiere J.M.
        • Le Moal M.
        • Simon H.
        Factors that predict individual vulnerability to amphetamine self-administration.
        Science. 1989; 245: 1511-1513
        • Piazza P.V.
        • Mittleman G.
        • Deminiere J.M.
        • Le Moal M.
        • Simon H.
        Relationship between schedule-induced polydipsia and amphetamine intravenous self-administration. Individual differences and role of experience.
        Behav Brain Res. 1993; 55: 185-193
        • Rouge-Pont F.
        • Piazza P.V.
        • Kharouby M.
        • Le Moal M.
        • Simon H.
        Higher and longer stress-induced increase in dopamine concentrations in the nucleus accumbens of animals predisposed to amphetamine self-administration. A microdialysis study.
        Brain Res. 1993; 602: 169-174
        • van den Heuvel O.A.
        • van der Werf Y.D.
        • Verhoef K.M.
        • de Wit S.
        • Berendse H.W.
        • Wolters E.C.
        • et al.
        Frontal-striatal abnormalities underlying behaviours in the compulsive-impulsive spectrum.
        J Neurol Sci. 2010; 289: 55-59
        • Fineberg N.A.
        • Potenza M.N.
        • Chamberlain S.R.
        • Berlin H.A.
        • Menzies L.
        • Bechara A.
        • et al.
        Probing compulsive and impulsive behaviors, from animal models to endophenotypes: A narrative review.
        Neuropsychopharmacology. 2010; 35: 591-604
        • Grant J.E.
        • Potenza M.N.
        Compulsive aspects of impulse-control disorders.
        Psychiatr Clin North Am. 2006; 29 (x): 539-551
        • Frank M.C.
        • Piedad J.
        • Rickards H.
        • Cavanna A.E.
        The role of impulse control disorders in Tourette syndrome: an exploratory study.
        J Neurol Sci. 2011; 310: 276-278
        • Matsunaga H.
        • Kiriike N.
        • Matsui T.
        • Oya K.
        • Okino K.
        • Stein D.J.
        Impulsive disorders in Japanese adult patients with obsessive-compulsive disorder.
        Compr Psychiatry. 2005; 46: 43-49
        • Jakubovski E.
        • Pittenger C.
        • Torres A.R.
        • Fontelle L.F.
        • deRosario M.C.
        • Ferrao Y.A.
        • et al.
        Dimensional correlates of poor insight in obsessive-compulsive disorder.
        Prog Neuropsychopharmacol Biol Psychiatry. 2011; 35: 1677-1681
        • Lopez-Ibor J.J.J.
        Impulse control in obsessive-compulsive disorder: A biopsychopathological approach.
        Prog Neuropsychopharmacol Biol Psychiatry. 1990; 14: 709-718