Archival Report| Volume 76, ISSUE 1, P75-83, July 01, 2014

Download started.


Brain Potentials Measured During a Go/NoGo Task Predict Completion of Substance Abuse Treatment

Published:November 18, 2013DOI:


      U.S. nationwide estimates indicate that 50% to 80% of prisoners have a history of substance abuse or dependence. Tailoring substance abuse treatment to specific needs of incarcerated individuals could improve effectiveness of treating substance dependence and preventing drug abuse relapse. We tested whether pretreatment neural measures of a response inhibition (Go/NoGo) task would predict which individuals would or would not complete a 12-week cognitive behavioral substance abuse treatment program.


      Adult incarcerated participants (n = 89; women n = 55) who volunteered for substance abuse treatment performed a Go/NoGo task while event-related potentials (ERPs) were recorded. Stimulus- and response-locked ERPs were compared between participants who completed (n = 68; women = 45) and discontinued (n = 21; women = 10) treatment.


      As predicted, stimulus-locked P2, response-locked error-related negativity (ERN/Ne), and response-locked error positivity (Pe), measured with windowed time-domain and principal component analysis, differed between groups. Using logistic regression and support-vector machine (i.e., pattern classifiers) models, P2 and Pe predicted treatment completion above and beyond other measures (i.e., N2, P300, ERN/Ne, age, sex, IQ, impulsivity, depression, anxiety, motivation for change, and years of drug abuse).


      Participants who discontinued treatment exhibited deficiencies in sensory gating, as indexed by smaller P2; error-monitoring, as indexed by smaller ERN/Ne; and adjusting response strategy posterror, as indexed by larger Pe. The combination of P2 and Pe reliably predicted 83.33% of individuals who discontinued treatment. These results may help in the development of individualized therapies, which could lead to more favorable, long-term outcomes.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


      1. National Institute on Drug Abuse, U.S. Department of Health and Human Services (2011): Treating Offenders with Drug Problems: Integrating Public Health and Public Safety. Available at: National Institute on Drug Abuse website: Accessed January 31, 2013.

      2. National Center on Addiction and Substance Abuse at Columbia University (2010): Behind Bars II: Substance Abuse and America’s Prison Population. Available at: Accessed July 26, 2013.

      3. Mumola CJ, Karberg JC (2006): Drug use and dependence, state and federal prisoners, 2004 (NCJ 213530). Available at: Accessed January 31, 2013.

        • Merrall E.L.
        • Kariminia A.
        • Binswanger I.A.
        • Hobbs M.S.
        • Farrell M.
        • Marsden J.
        • et al.
        Meta-analysis of drug-related deaths soon after release from prison.
        Addiction. 2010; 105: 1545-1554
        • Gossop M.
        • Marsden J.
        • Stewart D.
        • Kidd T.
        The National Treatment Outcome Research Study (NTORS): 4–5 year follow-up results.
        Addiction. 2002; 98: 291-303
        • Hubbard R.L.
        • Craddock S.G.
        • Anderson J.
        Overview of 5-year followup outcomes in the drug abuse treatment outcome studies (DATOS).
        J Subst Abuse Treat. 2003; 25: 125-134
        • Mattson M.E.
        • Del Boca F.K.
        • Carroll K.M.
        • Cooney N.L.
        • DiClemente C.C.
        • Donovan D.
        • et al.
        Compliance with treatment and follow-up protocols in Project MATCH: Predictors and relationship to outcome.
        Alcohol Clin Exp Res. 1998; 22: 1328-1339
        • Sayre S.L.
        • Schmitz J.M.
        • Stotts A.L.
        • Averill P.M.
        • Rhoades H.M.
        • Grabowski J.J.
        Determining predictors of attrition in an outpatient substance abuse program.
        Am J Drug Alcohol Abuse. 2002; 28: 55-72
        • Simpson D.D.
        • Joe G.W.
        • Brown B.S.
        Treatment retention and follow-up outcomes in the Drug Abuse Treatment Outcome Study (DATOS).
        J Addict Behav. 1997; 11: 294-307
        • Anderson N.E.
        • Baldridge R.M.
        • Stanford M.S.
        P3 amplitude predicts successful treatment program completion in substance dependent individuals.
        Subst Use Misuse. 2011; 46: 669-677
        • Boutros N.N.
        • Gooding D.
        • Sundaresan K.
        • Burroughs S.
        • Johanson C.E.
        Cocaine-dependence and cocaine-induced paranoia and mid-latency auditory evoked responses and sensory gating.
        Psychiatry Res. 2006; 145: 147-154
        • Bauer L.O.
        Frontal P300 decrements, childhood conduct disorder, family history, and the prediction of relapse among abstinent cocaine abusers.
        Drug Alcohol Depend. 1997; 44: 1-10
        • Bauer L.O.
        CNS recovery from cocaine, cocaine and alcohol, or opioid dependence: A P300 study.
        Clin Neurophysiol. 2001; 112: 1508-1515
        • Luck S.J.
        • Hillyard S.A.
        Electrophysiological correlates of feature analysis during visual search.
        Psychophysiology. 1994; 31: 291-308
        • Ferreira-Santos F.
        • Silveira C.
        • Almeida P.R.
        • Palha A.
        • Barbosa F.
        • Marques-Teixeira J.
        The auditory P200 is both increased and reduced in schizophrenia? A meta-analytic dissociation of the effect for standard and target stimuli in the oddball task.
        Clin Neurophysiol. 2012; 123: 1300-1308
        • Lijffijt M.
        • Lane S.D.
        • Meier S.L.
        • Boutros N.N.
        • Burroughs S.
        • Steinberg J.L.
        • et al.
        P50, N100, and P200 sensory gating: Relationships with behavioral inhibition, attention, and working memory.
        Psychophysiology. 2009; 46: 1059-1068
        • Woltering S.
        • Granic I.
        • Lamm C.
        • Lewis M.D.
        Neural changes associated with treatment outcome in children with externalizing problems.
        Biol Psychiatry. 2011; 70: 873-879
        • Carter C.S.
        • Braver T.S.
        • Barch D.M.
        • Botvinick M.
        • Noll D.
        • Cohen J.D.
        Anterior cingulate cortex, error detection, and the online monitoring of performance.
        Science. 1998; 280: 747-749
        • Kiehl K.A.
        • Liddle P.F.
        • Hopfinger J.B.
        Error processing and the rostral anterior cingulate: An event-related fMRI study.
        Psychophysiology. 2000; 37: 216-223
        • Miltner W.H.R.
        • Lemke U.
        • Weiss T.
        • Holroyd C.
        • Scheffers M.K.
        • Coles M.G.H.
        Implementation of error-processing in the human anterior cingulate cortex: A source analysis of the magnetic equivalent of the error-related negativity.
        Biol Psychol. 2003; 64: 157-166
        • Holroyd C.B.
        • Coles M.G.H.
        The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity.
        Psychol Rev. 2002; 109: 679-709
        • Gehring W.J.
        • Goss B.
        • Coles M.G.H.
        • Meyer D.E.
        • Donchin E.
        A neural system for error detection and compensation.
        Psychol Sci. 1993; 4: 385-390
        • Falkenstein M.
        • Hohnsbein J.
        • Hoormann J.
        • Blanke L.
        Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks.
        Electroencephalogr Clin Neurophysiol. 1991; 78: 447-455
        • Falkenstein M.
        • Hohnsbein J.
        • Hoormann J.
        • Blanke L.
        Effects of errors in choice reaction tasks on the ERP under focused and divided attention.
        in: Brunia C.H.M. Galliard A.W.K. Kok A. Psychophysiological Brain Research. Tilburg University Press, Tilburg, The Netherlands1990: 192-195
        • Edwards B.G.
        • Calhoun V.D.
        • Kiehl K.A.
        Joint ICA of ERP and fMRI during error-monitoring.
        Neuroimage. 2012; 59: 1896-1903
        • Carbonnell L.
        • Falkenstein M.
        Does the error negativity reflect the degree of response conflict?.
        Brain Res. 2006; 1095: 124-130
        • van Veen V.
        • Carter C.S.
        The timing of action-monitoring processes in the anterior cingulate cortex.
        J Cogn Neurosci. 2002; 14: 593-602
        • Overbeek T.J.M.
        • Nieuwenhuis S.
        • Ridderinkhof K.R.
        Dissociable components of error processing: On the functional significance of the Pe vis-à-vis the ERN/Ne.
        J Psychophysiol. 2005; 19: 319-329
        • Nieuwenhuis S.
        • Ridderinkhof K.R.
        • Blom J.
        • Band G.P.H.
        • Kok A.
        Error-related brain potentials are differentially related to awareness of response errors: Evidence from an antisaccade task.
        Psychophysiology. 2001; 38: 752-760
        • Leuthold H.
        • Sommer S.
        ERP correlates of error processing in spatial S-R compatibility tasks.
        Clin Neurophysiol. 1999; 110: 342-357
        • Endrass T.
        • Reuter B.
        • Kathmann N.
        ERP correlates of conscious error recognition: Aware and unaware errors in an antisaccade task.
        Eur J Neurosci. 2007; 26: 1714-1720
        • Silva-Pereyra J.
        • Bernal J.
        • Rodriguez-Camacho M.
        • Yanez G.
        • Prieto-Corona B.
        • Luviano L.
        • et al.
        Poor reading skills may involve a failure to focus attention.
        Neuroreport. 2010; 21: 34-38
        • Huster R.J.
        • Westerhausen R.
        • Pantev C.
        • Konrad C.
        The role of the cingulate cortex as neural generator of the N200 and P300 in a tactile response inhibition task.
        Hum Brain Mapp. 2010; 31: 1260-1271
        • Folstein J.R.
        • Van Petten C.
        Influence of cognitive control and mismatch on the N2 component of the ERP: A review.
        Psychophysiology. 2008; 45: 152-170
        • Polich J.
        Updating P300: An integrative theory of P3a and P3b.
        Clin Neurophysiol. 2007; 118: 2128-2148
        • Campanella S.
        • Petit G.
        • Maurage P.
        • Kornreich C.
        • Verbanck P.
        • Noel X.
        Chronic alcoholism: Insights from neurophysiology.
        Clin Neurophysiol. 2009; 39: 191-207
        • Chapman R.M.
        • McCarry J.W.
        EP component identification and measurement by principal component analysis.
        Brain Cogn. 1995; 27: 288-310
        • Dien J.
        • Khoe W.
        • Mangun G.R.
        Evaluation of PCA and ICA of simulated ERPs: Promax vs. Infomax rotations.
        Hum Brain Mapp. 2007; 28: 742-763
        • Jaffe A.J.
        • Wilber C.H.
        A Treatment Manual for Substance Expectation Therapy (SET): Expectations, Motivation, and Personal Meaning in the Treatment of Substance Abuse.
        Substance Abuse Treatment Unit, Connecticut Mental Health Center, Yale University School of Medicine, New Haven, CT2001
        • Hare R.D.
        Manual for the Hare Psychopathy Checklist—Revised, 2nd ed.
        Multi-Health Systems, Toronto, Canada2003
        • Wechsler D.
        Wechsler Adult Intelligence Scale.
        Psychological Corporation, New York, NY1997
        • Spielberger C.D.
        • Gorsuch R.L.
        • Lushene R.
        • Vagg P.R.
        • Jacobs G.A.
        Manual for the State-Trait Anxiety Inventory.
        Consulting Psychologists Press, Palo Alto, CA1983
        • Beck A.T.
        • Steer R.A.
        • Brown G.K.
        Beck Depression Inventory—II (BDI-II).
        Harcourt Assessment, San Antonio, TX1996
        • McConaughy E.A.
        • Prochaska J.O.
        • Velicer W.G.
        Stages of change in psychotherapy: Measurement and sample profiles.
        Psychotherapy. 1983; 20: 368-375
        • McLellan A.T.
        • Kushner H.I.
        • Metzger D.
        • Peters R.
        • Smith I.
        • Grissom G.
        • et al.
        The fifth edition of the Addiction Severity Index.
        J Subst Abuse Treat. 1992; 9: 199-213
        • Jasper H.H.
        The ten-twenty electrode system of the International Federation.
        Electroencephalogr Clin Neurophysiol. 1958; 10: 371-375
        • Jung T.-P.
        • Makeig S.
        • Westerfield M.
        • Townsend J.
        • Courchesne E.
        • Sejnowski T.J.
        Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects.
        Clin Neurophysiol. 2000; 111: 1745-1758
        • Jennings J.R.
        • Wood C.C.
        The e-Adjustment procedure for repeated-measures analyses of variance.
        Psychophysiology. 1976; 13: 277-278
        • Picton T.W.
        • Bentin S.
        • Berg P.
        • Donchin E.
        • Hillyard S.A.
        • Johnson R.J.
        • et al.
        Guidelines for using human event-related potentials to study congnition: Recording standards and publication criteria.
        Psychophysiology. 2000; 37: 127-152
        • Jain A.K.
        • Duin R.P.W.
        • Mao J.C.
        Statistical pattern recognition: A review.
        IEEE Trans Pattern Analysis Machine Intell. 2000; 22: 4-37
        • Kemp A.H.
        • Hopkinson P.J.
        • Hermens D.F.
        • Rowe D.L.
        • Sumich A.L.
        • Clark C.R.
        • et al.
        Fronto-temporal alterations within the first 200 ms during an attentional task distinguish major depression, non-clinical participants with depressed mood and healthy controls: A potential biomarker?.
        Hum Brain Mapp. 2009; 30: 602-614
        • Falkenstein M.
        • Hoorman J.
        • Christ S.
        • Hohnsbein J.
        ERP components on reaction errors and their functional significance: A tutorial.
        Biol Psychol. 2000; 51: 87-107
        • Aharoni E.
        • Vincent G.M.
        • Harenski C.L.
        • Calhoun V.D.
        • Sinnott-Armstrong W.
        • Gazzaniga M.S.
        • et al.
        Neuro-prediction of future rearrest.
        Proc Natl Acad Sci U S A. 2013; 110: 6223-6228
        • Hajcak G.
        • Vidal F.
        • Simons R.F.
        Difficulties with easy tasks: ERN/Ne and stimulus component overlap.
        in: Ullsperger M. Falkenstein M. Error, Conflicts, and the Brain: Current Opinions on Performance Monitoring. MPI of Cognitive Neuroscience, Leipzig2004: 204-211
        • Wan L.
        • Baldridge R.M.
        • Colby A.M.
        • Stanford M.S.
        Association of P3 amplitude to treatment completion in substance dependent individuals.
        Psychiatry Res. 2010; 177: 223-227
        • Donchin E.
        • Coles M.G.
        Is the P300 a manifestation of context updating?.
        Behav Brain Sci. 1988; 11: 357-427
        • Fallgatter A.J.
        • Strik W.K.
        The NoGo anteriorization as a neurophysiological standard-index for cognitive response control.
        Int J Psychophysiol. 1999; 32: 233-238
        • Salisbury D.F.
        • Griggs C.B.
        • Shenton M.E.
        • McCarley R.W.
        The NoGo P300 “anteriorization” effect and response inhibition.
        Clin Neurophysiol. 2004; 115: 1550-1558
        • Kamarajan C.
        • Porjesz B.
        • Jones K.A.
        • Choi K.
        • Chorlian D.B.
        • Padmanabhapillai A.
        • et al.
        Alcoholism is a disinhibitory disorder: Neurophysiological evidence from a Go/No-Go task.
        Biol Psychol. 2005; 69: 353-373
        • Ruchsow M.
        • Groen G.
        • Kiefer M.
        • Hermle L.
        • Spitzer M.
        • Falkenstein M.
        Impulsiveness and ERP components in a Go/Nogo task.
        J Neural Transm. 2008; 115: 909-915
        • Evans E.
        • Jaffe A.
        • Urada D.
        • Anglin M.D.
        Differential outcomes of court-supervised substance abuse treatment among California parolees and probationers.
        Int J Offender Ther Comp Criminol. 2012; 56: 539-556
        • Landry M.J.
        Understanding Drugs of Abuse: The Processes of Addiction, Treatment, and Recovery.
        American Psychiatric Publishing, Arlington, VA1994
        • McLellan A.T.
        • Woody G.E.
        • Metzger D.
        • McKay J.
        • Durell J.
        • Alterman A.I.
        • et al.
        Evaluating the effectiveness of addiction treatments: Reasonable expectations, appropriate comparisons.
        Milbank Q. 1996; 74: 51-85
        • Farabee D.
        • Prendergast M.
        • Anglin M.D.
        The effectiveness of coerced treatment for drug-abusing offenders.
        Fed Probation. 1998; 62: 3-10
        • Harrell A.
        • Roman J.
        Reducing drug use and crime among offenders: The impact of graduated sanctions.
        J Drug Issues. 2001; 31: 207-231
        • Zemore S.E.
        The effect of social desirability on reported motivation, substance use severity, and treatment attendance.
        J Subst Abuse Treat. 2012; 42: 400-412
        • Jaeggi S.M.
        • Buschkuehl M.
        • Jonides J.
        • Perrig W.J.
        Improving fluid intelligence with training on working memory.
        Proc Natl Acad Sci U S A. 2008; 105: 6829-6833
        • Morrison A.B.
        • Chein J.M.
        Does working memory training work? The promise and challenges of enhancing cognition by training working memory.
        Psychol Bull Rev. 2011; 18: 46-60
        • Olesen P.J.
        • Westerberg H.
        • Klingberg T.
        Increased prefrontal and parietal activity after training of working memory.
        Nat Neurosci. 2004; 7: 75-79