Advertisement

Changes in the Development of Striatum Are Involved in Repetitive Behavior in Autism

      Background

      Repetitive behavior is a core feature of autism and has been linked to differences in striatum. In addition, the brain changes associated with autism appear to vary with age. However, most studies investigating striatal differences in autism are cross-sectional, limiting inferences on development. In this study, we set out to 1) investigate striatal development in autism, using a longitudinal design; and 2) examine the relationship between striatal development and repetitive behavior.

      Methods

      We acquired longitudinal structural magnetic resonance imaging scans from 86 individuals (49 children with autism, 37 matched control subjects). Each individual was scanned twice, with a mean scan interval time of 2.4 years. Mean age was 9.9 years at time 1 and 12.3 years at time 2. Striatal structures were traced manually with high reliability. Multivariate analyses of variance were used to investigate differences in brain development between diagnostic groups. To examine the relationship with behavior, correlations between changes in brain volumes and clinical measures were calculated.

      Results

      Our results showed an increase in the growth rate of striatal structures for individuals with autism compared with control subjects. The effect was specific to caudate nucleus, where growth rate was doubled. Second, faster striatal growth was correlated with more severe repetitive behavior (insistence on sameness) at the preschool age.

      Conclusions

      This longitudinal study of brain development in autism confirms the involvement of striatum in repetitive behavior. Furthermore, it underscores the significance of brain development in autism, as the severity of repetitive behavior was related to striatal growth, rather than volume per se.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Happé F.
        • Ronald A.
        • Plomin R.
        Time to give up on a single explanation for autism.
        Nat Neurosci. 2006; 9: 1218-1220
        • Ronald A.
        • Hoekstra R.A.
        Autism spectrum disorders and autistic traits: A decade of new twin studies.
        Am J Med Genet B Neuropsychiatr Genet. 2011; 156B: 255-274
        • Hu V.W.
        • Steinberg M.E.
        Novel clustering of items from the Autism Diagnostic Interview-Revised to define phenotypes within autism spectrum disorders.
        Autism Res. 2009; 2: 67-77
        • Courchesne E.
        • Campbell K.
        • Solso S.
        Brain growth across the life span in autism: Age-specific changes in anatomical pathology.
        Brain Res. 2011; 1380: 138-145
        • Hazlett H.C.
        • Poe M.D.
        • Gerig G.
        • Styner M.
        • Chappell C.
        • Smith R.G.
        • et al.
        Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years. Arch Gen.
        Psychiatry. 2011; 68: 467-476
        • Hardan A.Y.
        • Libove R.A.
        • Keshavan M.S.
        • Melhem N.M.
        • Minshew N.J.
        A preliminary longitudinal magnetic resonance imaging study of brain volume and cortical thickness in autism.
        Biol Psychiatry. 2009; 66: 320-326
        • Aylward E.
        • Minshew N.
        • Field K.
        • Sparks B.
        • Singh N.
        Effects of age on brain volume and head circumference in autism.
        Neurology. 2002; 59: 175-183
        • Courchesne E.
        • Pierce K.
        Brain overgrowth in autism during a critical time in development: Implications for frontal pyramidal neuron and interneuron development and connectivity.
        Int J Dev Neurosci. 2005; 23: 153-170
        • Schumann C.M.
        • Bloss C.S.
        • Barnes C.C.
        • Wideman G.M.
        • Carper R.A.
        • Akshoomoff N.
        • et al.
        Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism.
        J Neurosci. 2010; 30: 4419-4427
        • Anagnostou E.
        • Taylor M.J.
        Review of neuroimaging in autism spectrum disorders: What have we learned and where we go from here.
        Mol Autism. 2011; 2: 4
        • Redcay E.
        • Courchesne E.
        When is the brain enlarged in autism? A meta-analysis of all brain size reports.
        Biol Psychiatry. 2005; 58: 1-9
        • Amaral D.G.
        • Schumann C.M.
        • Nordahl C.W.
        Neuroanatomy of autism.
        Trends Neurosci. 2008; 31: 137-145
        • Giedd J.N.
        • Lenroot R.K.
        • Shaw P.
        • Lalonde F.
        • Celano M.
        • White S.
        • et al.
        Trajectories of anatomic brain development as a phenotype.
        Novartis Found Symp. 2008; 289 (discussion 112–118, 193–195): 101-112
        • Shaw P.
        • Kabani N.J.
        • Lerch J.P.
        • Eckstrand K.
        • Lenroot R.
        • Gogtay N.
        • et al.
        Neurodevelopmental trajectories of the human cerebral cortex.
        J Neurosci. 2008; 28: 3586-3594
        • Giedd J.N.
        • Rapoport J.L.
        Structural MRI of pediatric brain development: What have we learned and where are we going?.
        Neuron. 2010; 67: 728-734
        • Langen M.
        • Schnack H.
        • Nederveen H.
        • Bos D.
        • Lahuis B.
        • de Jonge M.
        • et al.
        Changes in the developmental trajectories of striatum in autism.
        Biol Psychiatry. 2009; 66: 327-333
        • Durston S.
        • Davidson M.C.
        • Tottenham N.
        • Galvan A.
        • Spicer J.
        • Fossella J.A.
        • Casey B.J.
        A shift from diffuse to focal cortical activity with development.
        Dev Sci. 2006; 9: 1-8
        • Munson J.
        • Dawson G.
        • Abbott R.
        • Faja S.
        • Webb S.J.
        • Friedman S.D.
        • et al.
        Amygdalar volume and behavioral development in autism.
        Arch Gen Psychiatry. 2006; 63: 686-693
        • Mosconi M.W.
        • Kay M.
        • D’Cruz A.-M.
        • Seidenfeld A.
        • Guter S.
        • Stanford L.D.
        • Sweeney J.A.
        Impaired inhibitory control is associated with higher-order repetitive behaviors in autism spectrum disorders.
        Psychol Med. 2009; 39: 1559-1566
        • Lord C.
        • Rutter M.
        • Le Couteur A.
        Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders.
        J Autism Dev Disord. 1994; 24: 659-685
        • Costello E.
        • Edelbrock C.
        • Costello A.
        Validity of the NIMH Diagnostic Interview Schedule for Children: A comparison between psychiatric and pediatric referrals.
        J Abnorm Child Psychol. 1985; 13: 579-595
        • Stinissen J.
        • Willems P.J.
        • Coetsier P.
        • Hulsman W.
        Bewerking van de Wechsler Adult Intelligence Scale (W.A.I.S.) (Manual). [Manual for the Dutch Translated and Adapted Version of The Wechsler Adult Intelligence Scale (WAIS)].
        Swets and Zeitlinger, Lisse, Netherlands1970
        • Wechsler D.
        Wechsler Adult Intelligence Scale-Third Edition (WAIS- III): Nederlandstalige Bewerking. Technische Handleiding. (Dutch Version Technical Manual).
        Swets and Zeitlinger, Lisse, Netherlands2000
        • Van Haasen P.P.
        • De Bruyn E.E.J.
        • Pijl Y.J.
        • Poortinga Y.H.
        • Lutje-Spelberg H.C.
        • Vander Steene G.
        • et al.
        Wechsler Intelligence Scale for Children-Revised, Dutch Version.
        Swets and Zeitlinger, Lisse, Netherlands1986
        • Kort W.
        • Schittekatte M.
        • Dekker P.H.
        • Verhaeghe P.
        • Compaan L.E.
        • Bosmans M.
        • et al.
        Wechsler Intelligence Scale for Children-Third Edition, Dutch Version.
        Psychological Corporation, London2005
        • Durston S.
        • Nederveen H.
        • Dijk S.
        • Belle J.
        • Zeeuw P.
        • Langen M.
        • van Dijk A.
        Magnetic resonance simulation is effective in reducing anxiety related to magnetic resonance scanning in children.
        J Am Acad Child Adolesc Psychiatry. 2009; 48: 206-207
        • Lam K.S.L.
        • Aman M.G.
        The Repetitive Behavior Scale-Revised: Independent validation in individuals with autism spectrum disorders.
        J Autism Dev Disord. 2006; 37: 855-866
        • Shao Y.
        • Cuccaro M.L.
        • Hauser E.R.
        • Raiford K.L.
        • Menold M.M.
        • Wolpert C.M.
        • et al.
        Fine mapping of autistic disorder to chromosome 15q11-q13 by use of phenotypic subtypes.
        Am J Hum Genet. 2003; 72: 539-548
        • Cuccaro M.L.
        • Shao Y.
        • Grubber J.
        • Slifer M.
        • Wolpert C.M.
        • Donnelly S.L.
        • et al.
        Factor analysis of restricted and repetitive behaviors in autism using the Autism Diagnostic Interview-R.
        Child Psychiatry Hum Dev. 2003; 34: 3-17
        • Richler J.
        • Bishop S.L.
        • Kleinke J.R.
        • Lord C.
        Restricted and repetitive behaviors in young children with autism spectrum disorders.
        J Autism Dev Disord. 2007; 37: 73-85
        • Honey E.
        • McConachie H.
        • Randle V.
        • Shearer H.
        • Couteur A.S.
        One-year change in repetitive behaviours in young children with communication disorders including autism.
        J Autism Dev Disord. 2006; 38: 1439-1450
        • Szatmari P.
        • Georgiades S.
        • Bryson S.
        • Zwaigenbaum L.
        • Roberts W.
        • Mahoney W.
        • et al.
        Investigating the structure of the restricted, repetitive behaviours and interests domain of autism.
        J Child Psychol Psychiatry. 2006; 47: 582-590
        • Lenroot R.K.
        • Gogtay N.
        • Greenstein D.K.
        • Wells E.M.
        • Wallace G.L.
        • Clasen L.S.
        • et al.
        Sexual dimorphism of brain developmental trajectories during childhood and adolescence.
        Neuroimage. 2007; 36: 1065-1073
        • Wallace G.L.
        • Eric Schmitt J.
        • Lenroot R.
        • Viding E.
        • Ordaz S.
        • Rosenthal M.A.
        • et al.
        A pediatric twin study of brain morphometry.
        J Child Psychol Psychiatry. 2006; 47: 987-993
        • Kremen W.S.
        • Prom-Wormley E.
        • Panizzon M.S.
        • Eyler L.T.
        • Fischl B.
        • Neale M.C.
        • et al.
        Genetic and environmental influences on the size of specific brain regions in midlife: The VETSA MRI study.
        Neuroimage. 2010; 49: 1213-1223
        • Hickie I.B.
        • Naismith S.L.
        • Ward P.B.
        • Scott E.M.
        • Mitchell P.B.
        • Schofield P.R.
        • et al.
        Serotonin transporter gene status predicts caudate nucleus but not amygdala or hippocampal volumes in older persons with major depression.
        J Affect Disord. 2007; 98: 137-142
        • Bartrés-Faz D.
        • Junqué C.
        • Serra-Grabulosa J.M.
        • López-Alomar A.
        • Moya A.
        • Bargalló N.
        • et al.
        Dopamine DRD2 Taq I polymorphism associates with caudate nucleus volume and cognitive performance in memory impaired subjects.
        Neuroreport. 2002; 13: 1121-1125
        • Durston S.
        • Fossella J.A.
        • Casey B.J.
        • Hulshoff Pol H.E.
        • Galvan A.
        • Schnack H.G.
        • et al.
        Differential effects of DRD4 and DAT1 genotype on fronto-striatal gray matter volumes in a sample of subjects with attention deficit hyperactivity disorder, their unaffected siblings, and controls.
        Mol Psychiatry. 2005; 10: 678-685
        • Shook D.
        • Brady C.
        • Lee P.S.
        • Kenealy L.
        • Murphy E.R.
        • Gaillard W.D.
        • et al.
        Effect of dopamine transporter genotype on caudate volume in childhood ADHD and controls.
        Am J Med Genet B Neuropsychiatr Genet. 2011; 156B: 28-35
        • Stein J.L.
        • Hibar D.P.
        • Madsen S.K.
        • Khamis M.
        • McMahon K.L.
        • de Zubicaray G.I.
        • et al.
        Discovery and replication of dopamine-related gene effects on caudate volume in young and elderly populations (N=1198) using genome-wide search.
        Mol Psychiatry. 2011; 16: 927-937
        • Braun N.N.
        • Reutiman T.J.
        • Lee S.
        • Folsom T.D.
        • Fatemi S.H.
        Expression of phosphodiesterase 4 is altered in the brains of subjects with autism.
        Neuroreport. 2007; 18: 1841-1844
        • Vorstman J.
        • Staal W.
        • van Daalen E.
        • van Engeland H.
        • Hochstenbach P.
        • Franke L.
        Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism.
        Mol Psychiatry. 2006; 11: 18-28
        • Muhle R.
        • Trentacoste S.
        • Rapin I.
        The genetics of autism.
        Pediatrics. 2004; 113: e472-e486
        • Gadow K.D.
        • Roohi J.
        • DeVincent C.J.
        • Hatchwell E.
        Association of ADHD, tics, and anxiety with dopamine transporter (DAT1) genotype in autism spectrum disorder.
        J Child Psychol Psychiatry. 2008; 49: 1331-1338
        • Philip R.C.M.
        • Dauvermann M.R.
        • Whalley H.C.
        • Baynham K.
        • Lawrie S.M.
        • Stanfield A.C.
        A systematic review and meta-analysis of the fMRI investigation of autism spectrum disorders.
        Neurosci Biobehav Rev. 2012; 36: 901-942
        • Casanova M.
        • Buxhoeveden D.
        • Switala A.
        • Roy E.
        Minicolumnar pathology in autism.
        Neurology. 2002; 58: 428-432
        • Courchesne E.
        • Mouton P.R.
        • Calhoun M.E.
        • Semendeferi K.
        • Ahrens-Barbeau C.
        • Hallet M.J.
        • et al.
        Neuron number and size in prefrontal cortex of children with autism.
        JAMA. 2011; 306: 2001-2010
        • Catani M.
        • Dell’acqua F.
        • Vergani F.
        • Malik F.
        • Hodge H.
        • Roy P.
        • et al.
        Short frontal lobe connections of the human brain.
        Cortex. 2012; 48: 273-291
        • Alexander G.E.
        • DeLong M.R.
        • Strick P.L.
        Parallel organization of functionally segregated circuits linking basal ganglia and cortex.
        Annu Rev Neurosci. 1986; 9: 357-381
        • Alexander G.E.
        • Crutcher M.D.
        Functional architecture of basal ganglia circuits: Neural substrates of parallel processing.
        Trends Neurosci. 1990; 13: 266-271
        • Kana R.K.
        • Keller T.A.
        • Minshew N.J.
        • Just M.A.
        Inhibitory control in high-functioning autism: Decreased activation and underconnectivity in inhibition networks.
        Biol Psychiatry. 2007; 62: 198-206
        • Langen M.
        • Leemans A.
        • Johnston P.
        • Ecker C.
        • Daly E.
        • Murphy C.M.
        • et al.
        Fronto-striatal circuitry and inhibitory control in autism: Findings from diffusion tensor imaging tractography.
        Cortex. 2012; 48: 183-193
        • Thakkar K.N.
        • Polli F.E.
        • Joseph R.M.
        • Tuch D.S.
        • Hadjikhani N.
        • Barton J.J.S.
        • Manoach D.S.
        Response monitoring, repetitive behaviour and anterior cingulate abnormalities in autism spectrum disorders (ASD).
        Brain. 2008; 131: 2464-2478
        • Agam Y.
        • Joseph R.M.
        • Barton J.J.S.
        • Manoach D.S.
        Reduced cognitive control of response inhibition by the anterior cingulate cortex in autism spectrum disorders.
        Neuroimage. 2010; 52: 336-347
        • Kana R.K.
        • Libero L.E.
        • Moore M.S.
        Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders.
        Phys Life Rev. 2011; 8: 410-437
        • Ecker C.
        • Suckling J.
        • Deoni S.C.
        • Lombardo M.V.
        • Bullmore E.T.
        • Baron-Cohen S.
        • et al.
        Brain anatomy and its relationship to behavior in adults with autism spectrum disorder: A multicenter magnetic resonance imaging study.
        Arch Gen Psychiatry. 2012; 69: 195-209
        • Langen M.
        • Durston S.
        • Kas M.J.H.
        • Van Engeland H.
        • Staal W.G.
        The neurobiology of repetitive behavior: ... and men.
        Neurosci Biobehav Rev. 2011; 35: 356-365
        • Richler J.
        • Huerta M.
        • Bishop S.L.
        • Lord C.
        Developmental trajectories of restricted and repetitive behaviors and interests in children with autism spectrum disorders.
        Dev Psychopathol. 2010; 22: 55-69
        • Soke G.N.
        • Philofsky A.
        • Diguiseppi C.
        • Lezotte D.
        • Rogers S.
        • Hepburn S.
        Longitudinal changes in scores on the Autism Diagnostic Interview-Revised (ADI-R) in pre-school children with autism: Implications for diagnostic classification and symptom stability.
        Autism. 2011; 15: 545-562
        • Murphy G.H.
        • Beadle-Brown J.
        • Wing L.
        • Gould J.
        • Shah A.
        • Holmes N.
        Chronicity of challenging behaviours in people with severe intellectual disabilities and/or autism: A total population sample.
        J Autism Dev Disord. 2005; 35: 405-418