Advertisement

The Genome in Three Dimensions: A New Frontier in Human Brain Research

      Less than 1.5% of the human genome encodes protein. However, vast portions of the human genome are subject to transcriptional and epigenetic regulation, and many noncoding regulatory DNA elements are thought to regulate the spatial organization of interphase chromosomes. For example, chromosomal “loopings” are pivotal for the orderly process of gene expression, by enabling distal regulatory enhancer or silencer elements to directly interact with proximal promoter and transcription start sites, potentially bypassing hundreds of kilobases of interspersed sequence on the linear genome. To date, however, epigenetic studies in the human brain are mostly limited to the exploration of DNA methylation and posttranslational modifications of the nucleosome core histones. In contrast, very little is known about the regulation of supranucleosomal structures. Here, we show that chromosome conformation capture, a widely used approach to study higher-order chromatin, is applicable to tissue collected postmortem, thereby informing about genome organization in the human brain. We introduce chromosome conformation capture protocols for brain and compare higher-order chromatin structures at the chromosome 6p22.2-22.1 schizophrenia and bipolar disorder susceptibility locus, and additional neurodevelopmental risk genes, (DPP10, MCPH1) in adult prefrontal cortex and various cell culture systems, including neurons derived from reprogrammed skin cells. We predict that the exploration of three-dimensional genome architectures and function will open up new frontiers in human brain research and psychiatric genetics and provide novel insights into the epigenetic risk architectures of regulatory noncoding DNA.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Houston I.
        • Peter C.J.
        • Mitchell A.
        • Straubhaar J.
        • Rogaev E.
        • Akbarian S.
        Epigenetics in the human brain.
        Neuropsychopharmacology. 2013; 38: 183-197
        • Telese F.
        • Gamliel A.
        • Skowronska-Krawczyk D.
        • Garcia-Bassets I.
        • Rosenfeld M.G.
        “Seq-ing” insights into the epigenetics of neuronal gene regulation.
        Neuron. 2013; 77: 606-623
        • Ku C.S.
        • Naidoo N.
        • Wu M.
        • Soong R.
        Studying the epigenome using next generation sequencing.
        J Med Genet. 2011; 48: 721-730
        • Maze I.
        • Noh K.M.
        • Allis C.D.
        Histone regulation in the CNS: Basic principles of epigenetic plasticity.
        Neuropsychopharmacology. 2013; 38: 3-22
        • Maze I.
        • Feng J.
        • Wilkinson M.B.
        • Sun H.
        • Shen L.
        • Nestler E.J.
        Cocaine dynamically regulates heterochromatin and repetitive element unsilencing in nucleus accumbens.
        Proc Natl Acad Sci U S A. 2011; 108: 3035-3040
        • Numata S.
        • Ye T.
        • Hyde T.M.
        • Guitart-Navarro X.
        • Tao R.
        • Wininger M.
        • et al.
        DNA methylation signatures in development and aging of the human prefrontal cortex.
        Am J Hum Genet. 2012; 90: 260-272
        • Zeng J.
        • Konopka G.
        • Hunt B.G.
        • Preuss T.M.
        • Geschwind D.
        • Yi S.V.
        Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution.
        Am J Hum Genet. 2012; 91: 455-465
        • Khare T.
        • Pai S.
        • Koncevicius K.
        • Pal M.
        • Kriukiene E.
        • Liutkeviciute Z.
        • et al.
        5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary.
        Nat Struct Mol Biol. 2012; 19: 1037-1043
        • Grayson D.R.
        • Guidotti A.
        The dynamics of DNA methylation in schizophrenia and related psychiatric disorders.
        Neuropsychopharmacology. 2013; 38: 138-166
        • Jakovcevski M.
        • Akbarian S.
        Epigenetic mechanisms in neurological disease.
        Nat Med. 2012; 18: 1194-1204
        • Tang B.
        • Dean B.
        • Thomas E.A.
        Disease- and age-related changes in histone acetylation at gene promoters in psychiatric disorders.
        Transl Psychiatry. 2011; 1: e64
        • Sanyal A.
        • Bau D.
        • Marti-Renom M.A.
        • Dekker J.
        Chromatin globules: A common motif of higher order chromosome structure?.
        Curr Opin Cell Biol. 2011; 23: 325-331
        • Wood A.J.
        • Severson A.F.
        • Meyer B.J.
        Condensin and cohesin complexity: The expanding repertoire of functions.
        Nat Rev Genet. 2010; 11: 391-404
        • Gaszner M.
        • Felsenfeld G.
        Insulators: Exploiting transcriptional and epigenetic mechanisms.
        Nat Rev Genet. 2006; 7: 703-713
        • Cremer T.
        • Cremer C.
        Chromosome territories, nuclear architecture and gene regulation in mammalian cells.
        Nat Rev Genet. 2001; 2: 292-301
        • Duan Z.
        • Andronescu M.
        • Schutz K.
        • McIlwain S.
        • Kim Y.J.
        • Lee C.
        • et al.
        A three-dimensional model of the yeast genome.
        Nature. 2010; 465: 363-367
        • Shen Y.
        • Yue F.
        • McCleary D.F.
        • Ye Z.
        • Edsall L.
        • Kuan S.
        • et al.
        A map of the cis-regulatory sequences in the mouse genome.
        Nature. 2012; 488: 116-120
        • Tolhuis B.
        • Blom M.
        • Kerkhoven R.M.
        • Pagie L.
        • Teunissen H.
        • Nieuwland M.
        • et al.
        Interactions among Polycomb domains are guided by chromosome architecture.
        PLoS Genet. 2011; 7: e1001343
        • Moss J.F.
        • Oliver C.
        • Berg K.
        • Kaur G.
        • Jephcott L.
        • Cornish K.
        Prevalence of autism spectrum phenomenology in Cornelia de Lange and Cri du Chat syndromes.
        Am J Ment Retard. 2008; 113: 278-291
        • Deardorff M.A.
        • Bando M.
        • Nakato R.
        • Watrin E.
        • Itoh T.
        • Minamino M.
        • et al.
        HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle.
        Nature. 2012; 489: 313-317
        • Gervasini C.
        • Parenti I.
        • Picinelli C.
        • Azzollini J.
        • Masciadri M.
        • Cereda A.
        • et al.
        Molecular characterization of a mosaic NIPBL deletion in a Cornelia de Lange patient with severe phenotype.
        Eur J Med Genet. 2013; 56: 138-143
        • Kagey M.H.
        • Newman J.J.
        • Bilodeau S.
        • Zhan Y.
        • Orlando D.A.
        • van Berkum N.L.
        • et al.
        Mediator and cohesin connect gene expression and chromatin architecture.
        Nature. 2010; 467: 430-435
        • Dhar S.S.
        • Ongwijitwat S.
        • Wong-Riley M.T.
        Chromosome conformation capture of all 13 genomic Loci in the transcriptional regulation of the multisubunit bigenomic cytochrome C oxidase in neurons.
        J Biol Chem. 2009; 284: 18644-18650
        • Horike S.
        • Cai S.
        • Miyano M.
        • Cheng J.F.
        • Kohwi-Shigematsu T.
        Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome.
        Nat Genet. 2005; 37: 31-40
        • Jiang Y.
        • Jakovcevski M.
        • Bharadwaj R.
        • Connor C.
        • Schroeder F.A.
        • Lin C.L.
        • et al.
        Setdb1 histone methyltransferase regulates mood-related behaviors and expression of the NMDA receptor subunit NR2B.
        J Neurosci. 2010; 30: 7152-7167
        • Lomvardas S.
        • Barnea G.
        • Pisapia D.J.
        • Mendelsohn M.
        • Kirkland J.
        • Axel R.
        Interchromosomal interactions and olfactory receptor choice.
        Cell. 2006; 126: 403-413
        • Simonis M.
        • Klous P.
        • Splinter E.
        • Moshkin Y.
        • Willemsen R.
        • de Wit E.
        • et al.
        Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C).
        Nat Genet. 2006; 38: 1348-1354
        • Shulha H.P.
        • Crisci J.L.
        • Reshetov D.
        • Tushir J.S.
        • Cheung I.
        • Bharadwaj R.
        • et al.
        Human-specific histone methylation signatures at transcription start sites in prefrontal neurons.
        PLoS Biol. 2012; 10: e1001427
        • Huang H.S.
        • Matevossian A.
        • Jiang Y.
        • Akbarian S.
        Chromatin immunoprecipitation in postmortem brain.
        J Neurosci Methods. 2006; 156: 284-292
        • Miele A.
        • Dekker J.
        Mapping cis- and trans- chromatin interaction networks using chromosome conformation capture (3C).
        Methods Mol Biol. 2009; 464: 105-121
        • Purcell S.M.
        • Wray N.R.
        • Stone J.L.
        • Visscher P.M.
        • O’Donovan M.C.
        • Sullivan P.F.
        • et al.
        Common polygenic variation contributes to risk of schizophrenia and bipolar disorder.
        Nature. 2009; 460: 748-752
        • Shi J.
        • Levinson D.F.
        • Duan J.
        • Sanders A.R.
        • Zheng Y.
        • Pe’er I.
        • et al.
        Common variants on chromosome 6p22.1 are associated with schizophrenia.
        Nature. 2009; 460: 753-757
        • Stefansson H.
        • Ophoff R.A.
        • Steinberg S.
        • Andreassen O.A.
        • Cichon S.
        • Rujescu D.
        • et al.
        Common variants conferring risk of schizophrenia.
        Nature. 2009; 460: 744-747
        • Hagege H.
        • Klous P.
        • Braem C.
        • Splinter E.
        • Dekker J.
        • Cathala G.
        • et al.
        Quantitative analysis of chromosome conformation capture assays (3C-qPCR).
        Nat Protoc. 2007; 2: 1722-1733
        • Dostie J.
        • Zhan Y.
        • Dekker J.
        Chromosome conformation capture carbon copy technology.
        Curr Protoc Mol Biol. 2007; (Chapter 21:Unit 21.14)
        • Miele A.
        • Gheldof N.
        • Tabuchi T.M.
        • Dostie J.
        • Dekker J.
        Mapping chromatin interactions by chromosome conformation capture.
        Curr Protoc Mol Biol. 2006; (Chapter 21:Unit 21.11)
        • Dekker J.
        The three ‘C’s of chromosome conformation capture: Controls, controls, controls.
        Nat Methods. 2006; 3: 17-21
        • Belton J.M.
        • McCord R.P.
        • Gibcus J.H.
        • Naumova N.
        • Zhan Y.
        • Dekker J.
        Hi-C: A comprehensive technique to capture the conformation of genomes.
        Methods. 2012; 58: 268-276
        • van Berkum N.L.
        • Lieberman-Aiden E.
        • Williams L.
        • Imakaev M.
        • Gnirke A.
        • Mirny L.A.
        • et al.
        Hi-C: A method to study the three-dimensional architecture of genomes.
        J Vis Exp. 2010; (39. pii: 1869. doi:10.3791/1869)
        • Lieberman-Aiden E.
        • van Berkum N.L.
        • Williams L.
        • Imakaev M.
        • Ragoczy T.
        • Telling A.
        • et al.
        Comprehensive mapping of long-range interactions reveals folding principles of the human genome.
        Science. 2009; 326: 289-293
        • Kleinjan D.A.
        • van Heyningen V.
        Long-range control of gene expression: Emerging mechanisms and disruption in disease.
        Am J Hum Genet. 2005; 76: 8-32
        • Vakoc C.R.
        • Letting D.L.
        • Gheldof N.
        • Sawado T.
        • Bender M.A.
        • Groudine M.
        • et al.
        Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1.
        Mol Cell. 2005; 17: 453-462
        • Dostie J.
        • Dekker J.
        Mapping networks of physical interactions between genomic elements using 5C technology.
        Nat Protoc. 2007; 2: 988-1002
        • Zhou V.W.
        • Goren A.
        • Bernstein B.E.
        Charting histone modifications and the functional organization of mammalian genomes.
        Nat Rev Genet. 2011; 12: 7-18
        • Huang H.S.
        • Matevossian A.
        • Whittle C.
        • Kim S.Y.
        • Schumacher A.
        • Baker S.P.
        • et al.
        Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters.
        J Neurosci. 2007; 27: 11254-11262
        • Peter C.J.
        • Akbarian S.
        Balancing histone methylation activities in psychiatric disorders.
        Trends Mol Med. 2011; 17: 372-379
        • Kerimoglu C.
        • Agis-Balboa R.C.
        • Kranz A.
        • Stilling R.
        • Bahari-Javan S.
        • Benito-Garagorri E.
        • et al.
        Histone-methyltransferase MLL2 (KMT2B) is required for memory formation in mice.
        J Neurosci. 2013; 33: 3452-3464
        • Adegbola A.
        • Gao H.
        • Sommer S.
        • Browning M.
        A novel mutation in JARID1C/SMCX in a patient with autism spectrum disorder (ASD).
        Am J Med Genet A. 2008; 146A: 505-511
        • Gupta S.
        • Kim S.Y.
        • Artis S.
        • Molfese D.L.
        • Schumacher A.
        • Sweatt J.D.
        • et al.
        Histone methylation regulates memory formation.
        J Neurosci. 2010; 30: 3589-3599
        • Jakovcevski M.
        • Bharadwaj R.
        • Straubhaar J.
        • Gao G.
        • Gavin D.P.
        • Jakovcevski I.
        • et al.
        Prefrontal cortical dysfunction after overexpression of histone deacetylase 1 [published online ahead of print May 7].
        Biol Psychiatry. 2013;
        • Sanyal A.
        • Lajoie B.R.
        • Jain G.
        • Dekker J.
        The long-range interaction landscape of gene promoters.
        Nature. 2012; 489: 109-113
        • Ladewig J.
        • Mertens J.
        • Kesavan J.
        • Doerr J.
        • Poppe D.
        • Glaue F.
        • et al.
        Small molecules enable highly efficient neuronal conversion of human fibroblasts.
        Nat Methods. 2012; 9: 575-578
        • Kim K.S.
        Induced pluripotent stem (iPS) cells and their future in psychiatry.
        Neuropsychopharmacology. 2010; 35: 346-348
        • Yu J.
        • Hu K.
        • Smuga-Otto K.
        • Tian S.
        • Stewart R.
        • Slukvin I.I.
        • et al.
        Human induced pluripotent stem cells free of vector and transgene sequences.
        Science. 2009; 324: 797-801
        • Shaw G.
        • Morse S.
        • Ararat M.
        • Graham F.L.
        Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells.
        FASEB J. 2002; 16: 869-871
        • Maffie J.
        • Rudy B.
        Weighing the evidence for a ternary protein complex mediating A-type K+ currents in neurons.
        J Physiol. 2008; 586: 5609-5623
        • Birney E.
        • Stamatoyannopoulos J.A.
        • Dutta A.
        • Guigo R.
        • Gingeras T.R.
        • Margulies E.H.
        • et al.
        Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project.
        Nature. 2007; 447: 799-816
        • Stranger B.E.
        • Stahl E.A.
        • Raj T.
        Progress and promise of genome-wide association studies for human complex trait genetics.
        Genetics. 2011; 187: 367-383
        • Jiang Y.
        • Matevossian A.
        • Huang H.S.
        • Straubhaar J.
        • Akbarian S.
        Isolation of neuronal chromatin from brain tissue.
        BMC Neurosci. 2008; 9: 42
        • Matevossian A.
        • Akbarian S.
        Neuronal nuclei isolation from human postmortem brain tissue.
        J Vis Exp. 2008; (20. pii: 914. doi:10.3791/914)
        • Kano S.
        • Colantuoni C.
        • Han F.
        • Zhou Z.
        • Yuan Q.
        • Wilson A.
        • et al.
        Genome-wide profiling of multiple histone methylations in olfactory cells: Further implications for cellular susceptibility to oxidative stress in schizophrenia.
        Mol Psychiatry. 2013; 18: 740-742
        • Dixon J.R.
        • Selvaraj S.
        • Yue F.
        • Kim A.
        • Li Y.
        • Shen Y.
        • et al.
        Topological domains in mammalian genomes identified by analysis of chromatin interactions.
        Nature. 2012; 485: 376-380
        • Singh D.
        • Chan J.M.
        • Zoppoli P.
        • Niola F.
        • Sullivan R.
        • Castano A.
        • et al.
        Transforming fusions of FGFR and TACC genes in human glioblastoma.
        Science. 2012; 337: 1231-1235
        • Ribeiro de Almeida C.
        • Stadhouders R.
        • de Bruijn M.J.
        • Bergen I.M.
        • Thongjuea S.
        • Lenhard B.
        • et al.
        The DNA-binding protein CTCF limits proximal Vkappa recombination and restricts kappa enhancer interactions to the immunoglobulin kappa light chain locus.
        Immunity. 2011; 35: 501-513
        • Deng W.
        • Blobel G.A.
        Do chromatin loops provide epigenetic gene expression states?.
        Curr Opin Genet Dev. 2010; 20: 548-554
        • Kang H.J.
        • Kawasawa Y.I.
        • Cheng F.
        • Zhu Y.
        • Xu X.
        • Li M.
        • et al.
        Spatio-temporal transcriptome of the human brain.
        Nature. 2011; 478: 483-489
        • Colantuoni C.
        • Lipska B.K.
        • Ye T.
        • Hyde T.M.
        • Tao R.
        • Leek J.T.
        • et al.
        Temporal dynamics and genetic control of transcription in the human prefrontal cortex.
        Nature. 2011; 478: 519-523
        • Michaelson J.J.
        • Loguercio S.
        • Beyer A.
        Detection and interpretation of expression quantitative trait loci (eQTL).
        Methods. 2009; 48: 265-276
        • Liu F.
        • Wollstein A.
        • Hysi P.G.
        • Ankra-Badu G.A.
        • Spector T.D.
        • Park D.
        • et al.
        Digital quantification of human eye color highlights genetic association of three new loci.
        PLoS Genet. 2010; 6: e1000934
        • Visser M.
        • Kayser M.
        • Palstra R.J.
        HERC2 rs12913832 modulates human pigmentation by attenuating chromatin-loop formation between a long-range enhancer and the OCA2 promoter.
        Genome Res. 2012; 22: 446-455
        • Pomerantz M.M.
        • Ahmadiyeh N.
        • Jia L.
        • Herman P.
        • Verzi M.P.
        • Doddapaneni H.
        • et al.
        The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer.
        Nat Genet. 2009; 41: 882-884
        • Zhu J.
        • Adli M.
        • Zou J.Y.
        • Verstappen G.
        • Coyne M.
        • Zhang X.
        • et al.
        Genome-wide chromatin state transitions associated with developmental and environmental cues.
        Cell. 2013; 152: 642-654