Advertisement

Prenatal Poly(I:C) Exposure and Other Developmental Immune Activation Models in Rodent Systems

  • Urs Meyer
    Correspondence
    Address correspondence to Urs Meyer, Ph.D., Physiology and Behavior Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
    Affiliations
    Physiology and Behavior Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
    Search for articles by this author
      It is increasingly appreciated that altered neuroimmune mechanisms might play a role in the development of schizophrenia and related psychotic illnesses. On the basis of human epidemiological findings, a number of translational rodent models have been established to explore the consequences of prenatal immune activation on brain and behavioral development. The currently existing models are based on maternal gestational exposure to human influenza virus, the viral mimic polyriboinosinic-polyribocytidilic acid [Poly(I:C)], the bacterial endotoxin lipopolysaccharide, the locally acting inflammatory agent turpentine, or selected inflammatory cytokines. These models are pivotal for establishing causal relationships and for identifying cellular and molecular mechanisms that affect normal brain development in the event of early-life immune exposures. An important aspect of developmental immune activation models is that they allow a multi-faceted, longitudinal monitoring of the disease process as it unfolds during the course of neurodevelopment from prenatal to adult stages of life. An important recent refinement of these models is the incorporation of multiple etiologically relevant risk factors by combining prenatal immune challenges with specific genetic manipulations or additional environmental adversities. Converging findings from such recent experimental attempts suggest that prenatal infection can act as a “neurodevelopmental disease primer” that is likely relevant for a number of chronic mental illnesses. Hence, the adverse effects induced by prenatal infection might reflect an early entry into the neuropsychiatric route, but the specificity of subsequent disease or symptoms is likely to be strongly influenced by the genetic and environmental context in which the prenatal infectious process occurs.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Menninger K.A.
        Psychoses associated with influenza, I: general data: statistical analysis.
        JAMA. 1919; 72: 235-241
        • Torrey E.F.
        • Peterson M.R.
        Slow and latent viruses in schizophrenia.
        Lancet. 1973; 2: 22-24
        • Torrey E.F.
        • Bartko J.J.
        • Yolken R.H.
        Toxoplasma gondii and other risk factors for schizophrenia: An update.
        Schizophr Bull. 2012; 38: 642-647
        • Meyer U.
        • Yee B.K.
        • Feldon J.
        The neurodevelopmental impact of prenatal infections at different times of pregnancy: The earlier the worse?.
        Neuroscientist. 2007; 13: 241-256
        • Fatemi S.H.
        • Folsom T.D.
        The neurodevelopmental hypothesis of schizophrenia, revisited.
        Schizophr Bull. 2009; 35: 528-548
        • Bale T.L.
        • Baram T.Z.
        • Brown A.S.
        • Goldstein J.M.
        • Insel T.R.
        • McCarthy M.M.
        • et al.
        Early life programming and neurodevelopmental disorders.
        Biol Psychiatry. 2010; 68: 314-319
        • Mednick S.A.
        • Machon R.A.
        • Huttunen M.O.
        • Bonett D.
        Adult schizophrenia following prenatal exposure to an influenza epidemic.
        Arch Gen Psychiatry. 1988; 45: 189-192
        • Brown A.S.
        • Cohen P.
        • Harkavy-Friedman J
        • Babulas V.
        • Malaspina D
        • Gorman J.M.
        • Susser E.S.
        Prenatal rubella, premorbid abnormalities, and adult schizophrenia.
        Biol Psychiatry. 2001; 49: 473-486
        • Torrey E.F.
        • Rawlings R.
        • Waldman I.N.
        Schizophrenic births and viral diseases in two states.
        Schizophr Res. 1988; 1: 73-77
        • Suvisaari J.
        • Haukka J.
        • Tanskanen A.
        • Hovi T.
        • Lönnqvist J.
        Association between prenatal exposure to poliovirus infection and adult schizophrenia.
        Am J Psychiatry. 1999; 156: 1100-1102
        • Buka S.L.
        • Tsuang M.T.
        • Torrey E.F.
        • Klebanoff M.A.
        • Bernstein D.
        • Yolken R.H.
        Maternal infections and subsequent psychosis among offspring.
        Arch Gen Psychiatry. 2001; 58: 1032-1037
        • Sørensen H.J.
        • Mortensen E.L.
        • Reinisch J.M.
        • Mednick S.A.
        Association between prenatal exposure to bacterial infection and risk of schizophrenia.
        Schizophr Bull. 2009; 35: 631-637
        • Babulas V.
        • Factor-Litvak P.
        • Goetz R.
        • Schaefer C.A.
        • Brown A.S.
        Prenatal exposure to maternal genital and reproductive infections and adult schizophrenia.
        Am J Psychiatry. 2006; 163: 927-929
        • Mortensen P.B.
        • Nørgaard-Pedersen B.
        • Waltoft B.L.
        • Sørensen T.L.
        • Hougaard D.
        • Yolken R.H.
        Early infections of Toxoplasma gondii and the later development of schizophrenia.
        Schizophr Bull. 2007; 33: 741-744
        • Brown A.S.
        • Derkits E.J.
        Prenatal infection and schizophrenia: A review of epidemiologic and translational studies.
        Am J Psychiatry. 2010; 167: 261-280
        • Brown A.S.
        • Begg M.D.
        • Gravenstein S.
        • Schaefer C.A.
        • Wyatt R.J.
        • Bresnahan M.
        • et al.
        Serologic evidence of prenatal influenza in the etiology of schizophrenia.
        Arch Gen Psychiatry. 2004; 61: 774-780
        • Brown A.S.
        • Vinogradov S.
        • Kremen W.S.
        • Poole J.H.
        • Deicken R.F.
        • Penner J.D.
        • et al.
        Prenatal exposure to maternal infection and executive dysfunction in adult schizophrenia.
        Am J Psychiatry. 2009; 166: 683-690
        • Brown A.S.
        • Schaefer C.A.
        • Quesenberry Jr, C.P.
        • Liu L.
        • Babulas V.P.
        • Susser E.S.
        Maternal exposure to toxoplasmosis and risk of schizophrenia in adult offspring.
        Am J Psychiatry. 2005; 162: 767-773
      1. Buka SL, Cannon TD, Torrey EF, Yolken RH; Collaborative Study Group on the Perinatal Origins of Severe Psychiatric Disorders (2008): Maternal exposure to herpes simplex virus and risk of psychosis among adult offspring. Biol Psychiatry 63:809–815

        • Brown A.S.
        • Schaefer CA
        • Quesenberry Jr, C.P.
        • Shen L.
        • Susser E.S.
        No evidence of relation between maternal exposure to herpes simplex virus type 2 and risk of schizophrenia?.
        Am J Psychiatry. 2006; 163: 2178-2180
        • Buka S.L.
        • Tsuang M.T.
        • Torrey E.F.
        • Klebanoff M.A.
        • Wagner R.L.
        • Yolken R.H.
        Maternal cytokine levels during pregnancy and adult psychosis.
        Brain Behav Immun. 2001; 15: 411-420
        • Brown A.S.
        • Hooton J.
        • Schaefer C.A.
        • Zhang H.
        • Petkova E.
        • Babulas V.
        • et al.
        Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring.
        Am J Psychiatry. 2004; 161: 889-895
        • McGrath J.J.
        • Richards L.J.
        Why schizophrenia epidemiology needs neurobiology—and vice versa.
        Schizophr Bull. 2009; 35: 577-581
        • Meyer U.
        • Feldon J.
        • Fatemi S.H.
        In-vivo rodent models for the experimental investigation of prenatal immune activation effects in neurodevelopmental brain disorders.
        Neurosci Biobehav Rev. 2009; 33: 1061-1079
        • Meyer U.
        • Feldon J.
        Epidemiology-driven neurodevelopmental animal models of schizophrenia.
        Prog Neurobiol. 2010; 90: 285-326
        • Short S.J.
        • Lubach G.R.
        • Karasin A.I.
        • Olsen C.W.
        • Styner M.
        • Knickmeyer R.C.
        • et al.
        Maternal influenza infection during pregnancy impacts postnatal brain development in the rhesus monkey.
        Biol Psychiatry. 2010; 67: 965-973
        • Kneeland R.E.
        • Fatemi S.H.
        Viral infection, inflammation and schizophrenia.
        Prog Neuropsychopharmacol Biol Psychiatry. 2013; 42: 35-48
        • Fatemi S.H.
        • Emamian E.S.
        • Kist D.
        • Sidwell R.W.
        • Nakajima K.
        • Akhter P.
        • et al.
        Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice.
        Mol Psychiatry. 1999; 4: 145-154
        • Fatemi S.H.
        • Reutiman T.J.
        • Folsom T.D.
        • Huang H.
        • Oishi K.
        • Mori S.
        • et al.
        Maternal infection leads to abnormal gene regulation and brain atrophy in mouse offspring: Implications for genesis of neurodevelopmental disorders.
        Schizophr Res. 2008; 99: 56-70
        • Moreno J.L.
        • Kurita M.
        • Holloway T.
        • López J.
        • Cadagan R.
        • Martínez-Sobrido L.
        • et al.
        Maternal influenza viral infection causes schizophrenia-like alterations of 5-HT2A and mGlu2 receptors in the adult offspring.
        J Neurosci. 2011; 31: 1863-1872
        • Winter C.
        • Reutiman T.J.
        • Folsom T.D.
        • Sohr R.
        • Wolf R.J.
        • Juckel G.
        • Fatemi S.H.
        Dopamine and serotonin levels following prenatal viral infection in mouse—implications for psychiatric disorders such as schizophrenia and autism.
        Eur Neuropsychopharmacol. 2008; 18: 712-716
        • Meyer U.
        • Feldon J.
        To poly(I:C) or not to poly(I:C): Advancing preclinical schizophrenia research through the use of prenatal immune activation models.
        Neuropharmacology. 2012; 62: 1308-1321
        • Shi L.
        • Fatemi S.H.
        • Sidwell R.W.
        • Patterson P.H.
        Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring.
        J Neurosci. 2003; 23: 297-302
        • Gilmore J.H.
        • Jarskog L.F.
        Exposure to infection and brain development: Cytokines in the pathogenesis of schizophrenia.
        Schizophr Res. 1997; 24: 365-367
        • Meyer U.
        • Feldon J.
        • Yee B.K.
        A review of the fetal brain cytokine imbalance hypothesis of schizophrenia.
        Schizophr Bull. 2009; 35: 959-972
        • Akira S.
        • Takeda K.
        Toll-like receptor signalling.
        Nat Rev Immunol. 2004; 4: 499-511
        • Cunningham C.
        • Campion S.
        • Teeling J.
        • Felton L.
        • Perry V.H.
        The sickness behaviour and CNS inflammatory mediator profile induced by systemic challenge of mice with synthetic double-stranded RNA (poly I:C).
        Brain Behav Immun. 2007; 21: 490-502
        • Kimura M.
        • Toth L.A.
        • Agostini H.
        • Cady A.B.
        • Majde J.A.
        • Krueger J.M.
        Comparison of acute phase responses induced in rabbits by lipopolysaccharide and double-stranded RNA.
        Am J Physiol. 1994; 267: R1596-R1605
        • Meyer U.
        • Nyffeler M.
        • Engler A.
        • Urwyler A.
        • Schedlowski M.
        • Knuesel I.
        • et al.
        The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology.
        J Neurosci. 2006; 26: 4752-4762
        • Abazyan B.
        • Nomura J.
        • Kannan G.
        • Ishizuka K.
        • Tamashiro K.L.
        • Nucifora F.
        • et al.
        Prenatal interaction of mutant DISC1 and immune activation produces adult psychopathology.
        Biol Psychiatry. 2010; 68: 1172-11781
        • Zuckerman L.
        • Rehavi M.
        • Nachman R.
        • Weiner I.
        Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: A novel neurodevelopmental model of schizophrenia.
        Neuropsychopharmacology. 2003; 28: 1778-1789
        • Ozawa K.
        • Hashimoto K.
        • Kishimoto T.
        • Shimizu E.
        • Ishikura H.
        • Iyo M.
        Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: A neurodevelopmental animal model of schizophrenia.
        Biol Psychiatry. 2006; 59: 546-554
        • Piontkewitz Y.
        • Arad M.
        • Weiner I.
        Abnormal trajectories of neurodevelopment and behavior following in utero insult in the rat.
        Biol Psychiatry. 2001; 70: 842-851
        • Vuillermot S.
        • Weber L.
        • Feldon J.
        • Meyer U.
        A longitudinal examination of the neurodevelopmental impact of prenatal immune activation in mice reveals primary defects in dopaminergic development relevant to schizophrenia.
        J Neurosci. 2010; 30: 1270-1287
        • Tandon R.
        • Nasrallah H.A.
        • Keshavan M.S.
        Schizophrenia, “just the facts” 4. Clinical features and conceptualization.
        Schizophr Res. 2009; 110: 1-23
        • Weinberger D.R.
        • Lipska B.K.
        Cortical maldevelopment, anti-psychotic drugs, and schizophrenia: A search for common ground.
        Schizophr Res. 1995; 16: 87-110
        • Halbreich U.
        • Kahn L.S.
        Hormonal aspects of schizophrenias: An overview.
        Psychoneuroendocrinology. 2003; 28: 1-16
        • Corcoran C.
        • Walker E.
        • Huot R.
        • Mittal V.
        • Tessner K.
        • Kestler L.
        • Malaspina D.
        The stress cascade and schizophrenia: Etiology and onset.
        Schizophr Bull. 2003; 29: 671-692
        • Piontkewitz Y.
        • Arad M.
        • Weiner I.
        Tracing the development of psychosis and its prevention: What can be learned from animal models.
        Neuropharmacology. 2012; 62: 1273-1289
        • Meyer U.
        • Spoerri E.
        • Yee B.K.
        • Schwarz M.J.
        • Feldon J.
        Evaluating early preventive antipsychotic and antidepressant drug treatment in an infection-based neurodevelopmental mouse model of schizophrenia.
        Schizophr Bull. 2010; 36: 607-623
        • Piontkewitz Y.
        • Assaf Y.
        • Weiner I.
        Clozapine administration in adolescence prevents postpubertal emergence of brain structural pathology in an animal model of schizophrenia.
        Biol Psychiatry. 2009; 66: 1038-1046
        • Piontkewitz Y.
        • Arad M.
        • Weiner I.
        Risperidone administered during asymptomatic period of adolescence prevents the emergence of brain structural pathology and behavioral abnormalities in an animal model of schizophrenia.
        Schizophr Bull. 2011; 37: 1257-1269
        • Richtand N.M.
        • Ahlbrand R.
        • Horn P.
        • Stanford K.
        • Bronson S.L.
        • McNamara R.K.
        Effects of risperidone and paliperidone pre-treatment on locomotor response following prenatal immune activation.
        J Psychiatr Res. 2011; 45: 1194-1201
        • Meyer U.
        • Feldon J.
        • Schedlowski M.
        • Yee B.K.
        Towards an immuno-precipitated neurodevelopmental animal model of schizophrenia.
        Neurosci Biobehav Rev. 2005; 29: 913-947
        • Ellman L.M.
        • Deicken R.F.
        • Vinogradov S.
        • Kremen WS
        • Poole J.H.
        • Kern D.M.
        • et al.
        Structural brain alterations in schizophrenia following fetal exposure to the inflammatory cytokine interleukin-8.
        Schizophr Res. 2010; 121: 46-54
        • Meyer U.
        • Nyffeler M.
        • Yee B.K.
        • Knuesel I.
        • Feldon J.
        Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice.
        Brain Behav Immun. 2008; 22: 469-486
        • Li Q.
        • Cheung C.
        • Wei R.
        • Hui E.S.
        • Feldon J.
        • Meyer U.
        • et al.
        Prenatal immune challenge is an environmental risk factor for brain and behavior change relevant to schizophrenia: Evidence from MRI in a mouse model.
        PLoS One. 2009; 4: e6354
        • Fortier M.E.
        • Luheshi G.N.
        • Boksa P.
        Effects of prenatal infection on prepulse inhibition in the rat depend on the nature of the infectious agent and the stage of pregnancy.
        Behav Brain Res. 2007; 181: 270-277
        • Carvey P.M.
        • Chang Q.
        • Lipton J.W.
        • Ling Z.
        Prenatal exposure to the bacteriotoxin lipopolysaccharide leads to long-term losses of dopamine neurons in offspring: A potential, new model of Parkinson’s disease.
        Front Biosci. 2003; 8: s826-37
        • Willette A.A.
        • Lubach G.R.
        • Knickmeyer R.C.
        • Short S.J.
        • Styner M.
        • Gilmore J.H.
        • Coe C.L.
        Brain enlargement and increased behavioral and cytokine reactivity in infant monkeys following acute prenatal endotoxemia.
        Behav Brain Res. 2011; 219: 108-115
        • Reimer T.
        • Brcic M.
        • Schweizer M.
        • Jungi T.W.
        Poly(I:C) and LPS induce distinct IRF3 and NF-kappaB signaling during type-I IFN and TNF responses in human macrophages.
        J Leukoc Biol. 2008; 83: 1249-1257
        • Hopwood N.
        • Maswanganyi T.
        • Harden L.M.
        Comparison of anorexia, lethargy, and fever induced by bacterial and viral mimetics in rats.
        Can J Physiol Pharmacol. 2009; 87: 211-220
        • Clark I.A.
        How TNF was recognized as a key mechanism of disease.
        Cytokine Growth Factor Rev. 2007; 18: 335-343
        • Hagberg H.
        • Gressens P.
        • Mallard C.
        Inflammation during fetal and neonatal life: Implications for neurologic and neuropsychiatric disease in children and adults.
        Ann Neurol. 2012; 71: 444-457
        • Burd I.
        • Balakrishnan B.
        • Kannan S.
        Models of fetal brain injury, intrauterine inflammation, and preterm birth.
        Am J Reprod Immunol. 2012; 67: 287-294
        • Harvey L.
        • Boksa P.
        Prenatal and postnatal animal models of immune activation: Relevance to a range of neurodevelopmental disorders.
        Dev Neurobiol. 2012; 72: 1335-1348
        • Aguilar-Valles A.
        • Luheshi G.N.
        Alterations in cognitive function and behavioral response to amphetamine induced by prenatal inflammation are dependent on the stage of pregnancy.
        Psychoneuroendocrinology. 2011; 36: 634-648
        • Aguilar-Valles A.
        • Flores C.
        • Luheshi G.N.
        Prenatal inflammation-induced hypoferremia alters dopamine function in the adult offspring in rat: Relevance for schizophrenia.
        PLoS One. 2010; 5: e10967
        • Aguilar-Valles A.
        • Jung S.
        • Poole S.
        • Flores C.
        • Luheshi G.N.
        Leptin and interleukin-6 alter the function of mesolimbic dopamine neurons in a rodent model of prenatal inflammation.
        Psychoneuroendocrinology. 2012; 37: 956-969
        • Ashdown H.
        • Dumont Y.
        • Ng M.
        • Poole S.
        • Boksa P.
        • Luheshi G.N.
        The role of cytokines in mediating effects of prenatal infection on the fetus: Implications for schizophrenia.
        Mol Psychiatry. 2006; 11: 47-55
        • Hsiao E.Y.
        • Patterson P.H.
        Activation of the maternal immune system induces endocrine changes in the placenta via IL-6.
        Brain Behav Immun. 2011; 25: 604-615
        • Smith S.E.
        • Li J.
        • Garbett K.
        • Mirnics K.
        • Patterson P.H.
        Maternal immune activation alters fetal brain development through interleukin-6.
        J Neurosci. 2007; 27: 10695-10702
        • Samuelsson A.M.
        • Jennische E.
        • Hansson H.A.
        • Holmäng A.
        Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABA(A) dysregulation and impaired spatial learning.
        Am J Physiol Regul Integr Comp Physiol. 2006; 290: R1345-1356
        • Zaretsky M.V.
        • Alexander J.M.
        • Byrd W.
        • Bawdon R.E.
        Transfer of inflammatory cytokines across the placenta.
        Obstet Gynecol. 2004; 103: 546-550
        • Xing Z.
        • Gauldie J.
        • Cox G.
        • Baumann H.
        • Jordana M.
        • Lei X.F.
        • Achong M.K.
        IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses.
        J Clin Invest. 1998; 101: 311-320
        • Meyer U.
        • Murray P.J.
        • Urwyler A.
        • Yee B.K.
        • Schedlowski M.
        • Feldon J.
        Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling.
        Mol Psychiatry. 2008; 13: 208-221
        • Brown A.S.
        The environment and susceptibility to schizophrenia.
        Prog Neurobiol. 2011; 93: 23-58
        • Owen M.J.
        Implications of genetic findings for understanding schizophrenia.
        Schizophr Bull. 2012; 38: 904-907
        • Cheung C.
        • Yu K.
        • Fung G.
        • Leung M.
        • Wong C.
        • Li Q.
        • et al.
        Autistic disorders and schizophrenia: Related or remote? An anatomical likelihood estimation.
        PLoS One. 2010; 5: e12233
        • Meyer U.
        • Feldon J.
        • Dammann O.
        Schizophrenia and autism: both shared and disorder-specific pathogenesis via perinatal inflammation?.
        Pediatr Res. 2011; 69: 26R-33R
        • Smoller J.W.
        • Craddock N.
        • Kendler K.
        • Lee P.H.
        • Neale B.M.
        • et al.
        • Cross-Disorder Group of the Psychiatric Genomics Consortium,
        Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis.
        Lancet. 2013; 381: 1371-1379
        • Moreno-De-Luca A.
        • Myers S.M.
        • Challman T.D.
        • Moreno-De-Luca D.
        • Evans D.W.
        • Ledbetter D.H.
        Developmental brain dysfunction: Revival and expansion of old concepts based on new genetic evidence.
        Lancet Neurol. 2013; 12: 406-414
        • Owen M.J.
        Intellectual disability and major psychiatric disorders: A continuum of neurodevelopmental causality.
        Br J Psychiatry. 2012; 200: 268-269
      2. O’Donnell P. Animal Models of Schizophrenia and Related Disorders. Humana Press, New York2011
        • Ayhan Y.
        • Sawa A.
        • Ross C.A.
        • Pletnikov M.V.
        Animal models of gene-environment interactions in schizophrenia.
        Behav Brain Res. 2009; 204: 274-281
        • Kas M.J.
        • Kahn R.S.
        • Collier D.A.
        • Waddington J.L.
        • Ekelund J.
        • Porteous D.J.
        • et al.
        Translational neuroscience of schizophrenia: Seeking a meeting of minds between mouse and man.
        Sci Transl Med. 2011; 3 (102mr3)
        • Selten J.P.
        • Frissen A.
        • Lensvelt-Mulders G.
        • Morgan V.A.
        Schizophrenia and 1957 pandemic of influenza: Meta-analysis.
        Schizophr Bull. 2010; 36: 219-228
        • Clarke M.C.
        • Tanskanen A.
        • Huttunen M.
        • Whittaker J.C.
        • Cannon M.
        Evidence for an interaction between familial liability and prenatal exposure to infection in the causation of schizophrenia.
        Am J Psychiatry. 2009; 166: 1025-1030
        • Maynard T.M.
        • Sikich L.
        • Lieberman J.A.
        • LaMantia A.S.
        Neural development, cell-cell signaling, and the “two-hit” hypothesis of schizophrenia.
        Schizophr Bull. 2001; 27: 457-476
        • Lipina T.V.
        • Zai C.
        • Hlousek D.
        • Roder J.C.
        • Wong A.H.
        Maternal immune activation during gestation interacts with Disc1 point mutation to exacerbate schizophrenia-related behaviors in mice.
        J Neurosci. 2013; 33: 7654-7666
        • Vuillermot S.
        • Joodmardi E.
        • Perlmann T.
        • Ögren SO
        • Feldon J
        • Meyer U.
        Prenatal immune activation interacts with genetic Nurr1 deficiency in the development of attentional impairments.
        J Neurosci. 2012; 32: 436-451
        • Giovanoli S.
        • Engler H.
        • Engler A.
        • Richetto J.
        • Voget M.
        • Willi R.
        • et al.
        Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice.
        Science. 2013; 339: 1095-1099
        • Baharnoori M.
        • Bhardwaj S.K.
        • Srivastava L.K.
        Neonatal behavioral changes in rats with gestational exposure to lipopolysaccharide: A prenatal infection model for developmental neuropsychiatric disorders.
        Schizophr Bull. 2012; 38: 444-456
        • Escobar M.
        • Crouzin N.
        • Cavalier M.
        • Quentin J.
        • Roussel J.
        • Lanté F.
        • et al.
        Early, time-dependent disturbances of hippocampal synaptic transmission and plasticity after in utero immune challenge.
        Biol Psychiatry. 2011; 70: 992-999
        • Atladóttir H.O.
        • Thorsen P.
        • Østergaard L.
        • Schendel D.E.
        • Lemcke S.
        • Abdallah M.
        • Parner E.T.
        Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders.
        J Autism Dev Disord. 2010; 40: 1423-1430
        • Brown A.S.
        • Sourander A
        • Hinkka-Yli-Salomäki S.
        • McKeague I.W.
        • Sundvall J.
        • Surcel H.M.
        Elevated maternal C-reactive protein and autism in a national birth cohort [published online ahead of print January 22].
        Mol Psychiatry. 2013;
        • Pineda D.A.
        • Palacio L.G.
        • Puerta I.C.
        • Merchán V.
        • Arango C.P.
        • Galvis A.Y.
        • et al.
        Environmental influences that affect attention deficit/hyperactivity disorder: Study of a genetic isolate.
        Eur Child Adolesc Psychiatry. 2007; 16: 337-346
        • Dammann O.
        • Leviton A.
        Maternal intrauterine infection, cytokines, and brain damage in the preterm newborn.
        Pediatr Res. 1997; 42: 1-8
        • Dammann O.
        • Leviton A.
        Role of the fetus in perinatal infection and neonatal brain damage.
        Curr Opin Pediatr. 2000; 12: 99-104

      Linked Article

      • Is There a Flame in the Brain in Psychosis?
        Biological PsychiatryVol. 75Issue 4
        • Preview
          For many decades, it was believed that the brain was immunologically privileged, hence it was surprising when Shatz and colleagues (1) reported in 2000 that a number of immune proteins (cytokines and major histocompatibility complex [MHC] proteins) were not just present in the brain but were localized at functional synapses. Subsequent work has shown that these molecules play a major role in brain development as well as in mature synaptic function and plasticity (2,3).
        • Full-Text
        • PDF