Advertisement

Population-based Analysis of Alzheimer’s Disease Risk Alleles Implicates Genetic Interactions

      Background

      Reported odds ratios and population attributable fractions (PAF) for late-onset Alzheimer’s disease (LOAD) risk loci (BIN1, ABCA7, CR1, MS4A4E, CD2AP, PICALM, MS4A6A, CD33, and CLU) come from clinically ascertained samples. Little is known about the combined PAF for these LOAD risk alleles and the utility of these combined markers for case–control prediction. Here we evaluate these loci in a large population-based sample to estimate PAF and explore the effects of additive and nonadditive interactions on LOAD status prediction performance.

      Methods

      2419 samples from the Cache County Memory Study were genotyped for APOE and nine LOAD risk loci from AlzGene.org. We used logistic regression and receiver operator characteristic analysis to assess the LOAD status prediction performance of these loci using additive and nonadditive models and compared odds ratios and PAFs between AlzGene.org and Cache County.

      Results

      Odds ratios were comparable between Cache County and AlzGene.org when identical single nucleotide polymorphisms were genotyped. PAFs from AlzGene.org ranged from 2.25% to 37%; those from Cache County ranged from .05% to 20%. Including non-APOE alleles significantly improved LOAD status prediction performance (area under the curve = .80) over APOE alone (area under the curve = .78) when not constrained to an additive relationship (p < .03). We identified potential allelic interactions (p values uncorrected): CD33-MS4A4E (synergy factor = 5.31; p < .003) and CLU-MS4A4E (synergy factor = 3.81; p < .016).

      Conclusions

      Although nonadditive interactions between loci significantly improve diagnostic ability, the improvement does not reach the desired sensitivity or specificity for clinical use. Nevertheless, these results suggest that understanding gene–gene interactions may be important in resolving Alzheimer’s disease etiology.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Corder E.H.
        • Saunders A.M.
        • Strittmatter W.J.
        • Schmechel D.E.
        • Gaskell P.C.
        • Small G.W.
        • et al.
        Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families.
        Science. 1993; 261: 921-923
        • Saunders A.M.
        • Strittmatter W.J.
        • Schmechel D.
        • George-Hyslop P.H.
        • Pericak-Vance M.A.
        • Joo S.H.
        • et al.
        Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease.
        Neurology. 1993; 43: 1467-1472
        • St Clair D.
        • Rennie M.
        • Slorach E.
        • Norrman J.
        • Yates C.
        • Carothers A.
        Apolipoprotein E epsilon 4 allele is a risk factor for familial and sporadic presenile Alzheimer’s disease in both homozygote and heterozygote carriers.
        J Med Genet. 1995; 32: 642-644
        • Strittmatter W.J.
        • Saunders A.M.
        • Schmechel D.
        • Pericak-Vance M.
        • Enghild J.
        • Salvesen G.S.
        • et al.
        Apolipoprotein E: High-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease.
        Proc Natl Acad Sci U S A. 1993; 90: 1977-1981
        • Bertram L.
        • McQueen M.B.
        • Mullin K.
        • Blacker D.
        • Tanzi R.E.
        Systematic meta-analyses of Alzheimer disease genetic association studies: The AlzGene database.
        Nat Genet. 2007; 39: 17-23
        • Harold D.
        • Abraham R.
        • Hollingworth P.
        • Sims R.
        • Gerrish A.
        • Hamshere M.L.
        • et al.
        Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease.
        Nat Genet. 2009; 41: 1088-1093
        • Hollingworth P.
        • Harold D.
        • Sims R.
        • Gerrish A.
        • Lambert J.C.
        • Carrasquillo M.M.
        • et al.
        Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease.
        Nat Genet. 2011; 43: 429-435
        • Lambert J.C.
        • Heath S.
        • Even G.
        • Campion D.
        • Sleegers K.
        • Hiltunen M.
        • et al.
        Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease.
        Nat Genet. 2009; 41: 1094-1099
        • Naj A.C.
        • Jun G.
        • Beecham G.W.
        • Wang L.S.
        • Vardarajan B.N.
        • Buros J.
        • et al.
        Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease.
        Nat Genet. 2011; 43: 436-441
        • Seshadri S.
        • Fitzpatrick A.L.
        • Ikram M.A.
        • DeStefano A.L.
        • Gudnason V.
        • Boada M.
        • et al.
        Genome-wide analysis of genetic loci associated with Alzheimer disease.
        JAMA. 2010; 303: 1832-1840
        • Verhaaren B.F.
        • Vernooij M.W.
        • Koudstaal P.J.
        • Uitterlinden A.G.
        • Duijn C.M.
        • Hofman A.
        • et al.
        Alzheimer’s disease genes and cognition in the nondemented general population.
        Biol Psychiatry. 2013; 73: 429-434
        • Bullock J.M.
        • Medway C.
        • Cortina-Borja M.
        • Turton J.C.
        • Prince J.A.
        • Ibrahim-Verbaas C.A.
        • et al.
        Discovery by the Epistasis Project of an epistatic interaction between the GSTM3 gene and the HHEX/IDE/KIF11 locus in the risk of Alzheimer’s disease.
        Neurobiol Aging. 2013; 34: 1309.e1-1309.e7
        • Combarros O.
        • Cortina-Borja M.
        • Smith A.D.
        • Lehmann D.J.
        Epistasis in sporadic Alzheimer’s disease.
        Neurobiol Aging. 2009; 30: 1333-1349
        • Moore J.H.
        • Williams S.M.
        Traversing the conceptual divide between biological and statistical epistasis: Systems biology and a more modern synthesis.
        BioEssays. 2005; 27: 637-646
        • Breitner J.C.
        • Wyse B.W.
        • Anthony J.C.
        • Welsh-Bohmer K.A.
        • Steffens D.C.
        • Norton M.C.
        • et al.
        APOE-epsilon4 count predicts age when prevalence of AD increases, then declines: The Cache County Study.
        Neurology. 1999; 53: 321-331
        • Tschanz J.T.
        • Welsh-Bohmer K.A.
        • Plassman B.L.
        • Norton M.C.
        • Wyse B.W.
        • Breitner J.C.
        • et al.
        An adaptation of the modified Mini-Mental State Examination: analysis of demographic influences and normative data: The Cache County Study.
        Neuropsychiatry Neuropsychol Behav Neurol. 2002; 15: 28-38
        • McKhann G.
        • Drachman D.
        • Folstein M.
        • Katzman R.
        • Price D.
        • Stadlan E.M.
        Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease.
        Neurology. 1984; 34: 939-944
        • R Core Team
        R: A Language and Environment for Statistical Computing. 2.15.1 Ed. R Foundation for Statistical Computing, Vienna, Austria2012
        • Gonzalez N.A.
        • Swain N.R.
        • Obregon O.
        • Buehler B.D.
        • Williams G.P.
        • Nelson E.J.
        • et al.
        Spatial and Temporal Statistical Analysis of Water Quality Patterns in a Small Temperate Supply Reservoir.
        Proceedings of the World Environmental and Water Resources Congress 2012: Crossing Boundaries. American Society of Civil Engineers, Reston, VA2012: 1982-1992 (Available at: http://cedb.asce.org/cgi/WWWdisplay.cgi?290306. Accessed February 2013)
        • Cortina-Borja M.
        • Smith A.D.
        • Combarros O.
        • Lehmann D.
        The synergy factor: A statistic to measure interactions in complex diseases.
        BMC Research Notes. 2009; 2 (Available at: http://www.biomedcentral.com/1756-0500/2/105. Accessed December 2012): 105
        • Nalls M.A.
        • Plagnol V.
        • Hernandez D.G.
        • Sharma M.
        • Sheerin U.M.
        • et al.
        • International Parkinson Disease Genomics C
        Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: A meta-analysis of genome-wide association studies.
        Lancet. 2011; 377: 641-649
        • Slatkin M.
        Exchangeable models of complex inherited diseases.
        Genetics. 2008; 179: 2253-2261
        • International HapMap C
        The International HapMap Project.
        Nature. 2003; 426: 789-796
        • Ridge P.G.
        • Maxwell T.J.
        • Corcoran C.D.
        • Norton M.C.
        • Tschanz J.T.
        • O’Brien E.
        • et al.
        Mitochondrial genomic analysis of late onset Alzheimer’s disease reveals protective haplogroups H6A1A/H6A1B: The Cache County Study on Memory in Aging.
        PLoS One. 2012; 7: e45134
        • O’Brien E.
        • Rogers A.R.
        • Beesley J.
        • Jorde L.B.
        Genetic structure of the Utah Mormons: Comparison of results based on RFLPs, blood groups, migration matrices, isonymy, and pedigrees.
        Hum Biol. 1994; 66: 743-759
        • Jorde L.B.
        • Morgan K.
        Genetic structure of the Utah Mormons: Isonymy analysis.
        Am J Phys Anthropol. 1987; 72: 403-412
        • Jorde L.B.
        The genetic structure of the Utah Mormons: Migration analysis.
        Hum Biol. 1982; 54: 583-597
        • Cordell H.J.
        Epistasis: What it means, what it doesn’t mean, and statistical methods to detect it in humans.
        Hum Mol Genet. 2002; 11: 2463-2468
        • Moore J.H.
        The ubiquitous nature of epistasis in determining susceptibility to common human diseases.
        Hum Hered. 2003; 56: 73-82
        • Tang M.X.
        • Maestre G.
        • Tsai W.Y.
        • Liu X.H.
        • Feng L.
        • Chung W.Y.
        • et al.
        Relative risk of Alzheimer disease and age-at-onset distributions, based on APOE genotypes among elderly African Americans, Caucasians, and Hispanics in New York City.
        Am J Hum Genet. 1996; 58: 574-584
        • Murrell J.R.
        • Price B.
        • Lane K.A.
        • Baiyewu O.
        • Gureje O.
        • Ogunniyi A.
        • et al.
        Association of apolipoprotein E genotype and Alzheimer disease in African Americans.
        Arch Neurol. 2006; 63: 431-434
        • Mayeux R.
        Apolipoprotein E, Alzheimer disease, and African Americans.
        Arch Neurol. 2003; 60: 161-163
        • Desai P.P.
        • Hendrie H.C.
        • Evans R.M.
        • Murrell J.R.
        • DeKosky S.T.
        • Kamboh M.I.
        Genetic variation in apolipoprotein D affects the risk of Alzheimer disease in African-Americans.
        Am J Med Genet B Neuropsychiatr Genet. 2003; 116B: 98-101
        • Maestre G.
        • Ottman R.
        • Stern Y.
        • Gurland B.
        • Chun M.
        • Tang M.X.
        • et al.
        Apolipoprotein E and Alzheimer’s disease: Ethnic variation in genotypic risks.
        Ann Neurol. 1995; 37: 254-259
        • Healy D.G.
        Case–control studies in the genomic era: A clinician’s guide.
        Lancet Neurol. 2006; 5: 701-707
        • Lee S.H.
        • Harold D.
        • Nyholt D.R.
        • Consortium A.N.
        • International Endogene C, Genetic
        • et al.
        Estimation and partitioning of polygenic variation captured by common SNPs for Alzheimer’s disease, multiple sclerosis and endometriosis.
        Hum Mol Genet. 2013; 22: 832-841