Advertisement

Schizophrenia miR-137 Locus Risk Genotype Is Associated with Dorsolateral Prefrontal Cortex Hyperactivation

      Background

      miR-137 dysregulation has been implicated in the etiology of schizophrenia, but its functional role remains to be determined.

      Methods

      Functional magnetic resonance imaging scans were acquired on 48 schizophrenia patients and 63 healthy volunteers (total sample size N = 111 subjects), with similar mean age and sex distribution, while subjects performed a Sternberg Item Response Paradigm with memory loads of one, three, and five numbers. Dorsolateral prefrontal cortex (DLPFC) retrieval activation for the working memory load of three numbers, for which hyperactivation had been shown in schizophrenia patients compared with control subjects, was extracted. The genome-wide association study confirmed schizophrenia risk single nucleotide polymorphism rs1625579 (miR-137 locus) was genotyped (schizophrenia: GG n = 0, GT n = 9, TT n = 39; healthy volunteers: GG = 2, GT n = 15, and TT n = 46). Fisher’s exact test examined the effect of diagnosis on rs1625579 allele frequency distribution (p = nonsignificant). Mixed model regression analyses examined the effects of diagnosis and genotype on working memory performance measures and DLPFC activation.

      Results

      Patients showed significantly higher left DLPFC retrieval activation on working memory load 3, lower working memory performance, and longer response times compared with controls. There was no effect of genotype on working memory performance or response times in either group. However, individuals with the rs1625579 TT genotype had significantly higher left DLPFC activation than those with the GG/GT genotypes.

      Conclusions

      Our study suggests that the rs1625579 TT (miR-137 locus) schizophrenia risk genotype is associated with the schizophrenia risk phenotype DLPFC hyperactivation commonly considered a measure of brain inefficiency.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Van Snellenberg J.X.
        • Torres I.J.
        • Thornton A.E.
        Functional neuroimaging of working memory in schizophrenia: Task performance as a moderating variable.
        Neuropsychology. 2006; 20: 497-510
        • Barch D.M.
        • Moore H.
        • Nee D.E.
        • Manoach D.S.
        • Luck S.J.
        CNTRICS imaging biomarkers selection: Working memory.
        Schizophr Bull. 2011; 38: 43-52
        • Callicott J.H.
        • Mattay V.S.
        • Verchinski B.A.
        • Marenco S.
        • Egan M.F.
        • Weinberger D.R.
        Complexity of prefrontal cortical dysfunction in schizophrenia: More than up or down.
        Am J Psychiatry. 2003; 160: 2209-2215
        • Potkin S.G.
        • Turner J.A.
        • Brown G.G.
        • McCarthy G.
        • Greve D.N.
        • Glover G.H.
        • et al.
        Working memory and DLPFC inefficiency in schizophrenia: The FBIRN study.
        Schizophr Bull. 2009; 35: 19-31
        • Potkin S.G.
        • Turner J.A.
        • Guffanti G.
        • Lakatos A.
        • Fallon J.H.
        • Nguyen D.D.
        • et al.
        A genome-wide association study of schizophrenia using brain activation as a quantitative phenotype.
        Schizophr Bull. 2009; 35: 96-108
        • Potkin S.G.
        • Turner J.A.
        • Fallon J.A.
        • Lakatos A.
        • Keator D.B.
        • Guffanti G.
        • et al.
        Gene discovery through imaging genetics: Identification of two novel genes associated with schizophrenia.
        Mol Psychiatry. 2009; 14: 416-428
        • Potkin S.G.
        • Macciardi F.
        • Guffanti G.
        • Fallon J.H.
        • Wang Q.
        • Turner J.A.
        • et al.
        Identifying gene regulatory networks in schizophrenia.
        Neuroimage. 2010; 53: 839-847
        • Lai E.C.
        Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation.
        Nat Genet. 2002; 30: 363-364
        • Bartel D.P.
        MicroRNAs: Genomics, biogenesis, mechanism, and function.
        Cell. 2004; 116: 281-297
        • Perkins D.O.
        • Jeffries C.D.
        • Jarskog L.F.
        • Thomson J.M.
        • Woods K.
        • Newman M.A.
        • et al.
        microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder.
        Genome Biol. 2007; 8: R27
        • Perkins D.O.
        • Jeffries C.
        • Sullivan P.
        Expanding the “central dogma”: the regulatory role of nonprotein coding genes and implications for the genetic liability to schizophrenia.
        Mol Psychiatry. 2005; 10: 69-78
        • Ripke S.
        • Sanders A.R.
        • Kendler K.S.
        • Levinson D.F.
        • Sklar P.
        • Holmans P.A.
        • et al.
        Genome-wide association study identifies five new schizophrenia loci.
        Nat Genet. 2011; 43: 969-976
        • Bemis L.T.
        • Chen R.
        • Amato C.M.
        • Classen E.H.
        • Robinson S.E.
        • Coffey D.G.
        • et al.
        MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines.
        Cancer Res. 2008; 68: 1362-1368
        • Silber J.
        • Lim D.A.
        • Petritsch C.
        • Persson A.I.
        • Maunakea A.K.
        • Yu M.
        • et al.
        miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells.
        BMC Med. 2008; 6: 14
        • Deng Y.
        • Deng H.
        • Bi F.
        • Liu J.
        • Bemis L.T.
        • Norris D.
        • et al.
        MicroRNA-137 targets carboxyl-terminal binding protein 1 in melanoma cell lines.
        Int J Biol Sci. 2011; 7: 133-137
        • Sun G.
        • Ye P.
        • Murai K.
        • Lang M.F.
        • Li S.
        • Zhang H.
        • et al.
        miR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells.
        Nat Commun. 2011; 2: 529
        • Szulwach K.E.
        • Li X.
        • Smrt R.D.
        • Li Y.
        • Luo Y.
        • Lin L.
        • et al.
        Cross talk between microRNA and epigenetic regulation in adult neurogenesis.
        J Cell Biol. 2010; 189: 127-141
        • Smrt R.D.
        • Szulwach K.E.
        • Pfeiffer R.L.
        • Li X.
        • Guo W.
        • Pathania M.
        • et al.
        MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1.
        Stem Cells. 2010; 28: 1060-1070
        • Glantz L.A.
        • Lewis D.A.
        Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia.
        Arch Gen Psychiatry. 2000; 57: 65-73
        • Green M.J.
        • Cairns M.J.
        • Wu J.
        • Dragovic M.
        • Jablensky A.
        • Tooney P.A.
        • et al.
        Genome-wide supported variant MIR137 and severe negative symptoms predict membership of an impaired cognitive subtype of schizophrenia.
        Mol Psychiatry. 2013; 18: 774-780
        • Decoster J.
        • De Hert M.
        • Viechtbauer W.
        • Nagels G.
        • Myin-Germeys I.
        • Peuskens J.
        • et al.
        Genetic association study of the P300 endophenotype in schizophrenia.
        Schizophr Res. 2012; 141: 54-59
        • Whalley H.C.
        • Papmeyer M.
        • Romaniuk L.
        • Sprooten E.
        • Johnstone E.C.
        • Hall J.
        • et al.
        Impact of a microRNA MIR137 susceptibility variant on brain function in people at high genetic risk of schizophrenia or bipolar disorder.
        Neuropsychopharmacology. 2012; 37: 2720-2729
        • Cummings E.
        • Donohoe G.
        • Hargreaves A.
        • Moore S.
        • Fahey C.
        • Dinan T.G.
        • et al.
        Mood congruent psychotic symptoms and specific cognitive deficits in carriers of the novel schizophrenia risk variant at MIR-137.
        Neurosci Lett. 2013; 532: 33-38
        • Turetsky B.I.
        • Calkins M.E.
        • Light G.A.
        • Olincy A.
        • Radant A.D.
        • Swerdlow N.R.
        Neurophysiological endophenotypes of schizophrenia: The viability of selected candidate measures.
        Schizophr Bull. 2007; 33: 69-94
        • First M.B.
        • Spitzer R.L.
        • Gibbon M.G.
        • Williams J.B.W.
        Structured Clinical Interview for DSM-IV-TR Axis I Disorders—Patient Edition (SCID-I/P).
        Biometrics Research, New York State Psychiatric Institute, New York2002
        • First M.B.
        • Spitzer R.L.
        • Gibbon M.G.
        • Williams J.B.W.
        Structured Clinical Interview for DSM-IV-TR Axis I Disorders—Patient Edition (SCID-I/NP).
        Biometrics Research, New York State Psychiatric Institute, New York2002
        • Oldfield R.C.
        The assessment and analysis of handedness: The Edinburgh inventory.
        Neuropsychologia. 1971; 9: 97-113
        • Heatherton T.F.
        • Kozlowski L.T.
        • Frecker R.C.
        • Fagerstrom K.O.
        The Fagerstrom Test for Nicotine Dependence: A revision of the Fagerstrom Tolerance Questionnaire.
        Br J Addict. 1991; 86: 1119-1127
        • Uttl B.
        North American Adult Reading Test: Age norms, reliability, and validity.
        J Clin Exp Neuropsychol. 2002; 24: 1123-1137
        • Andreasen N.
        The Scale for the Assessment of Positive Symptoms (SAPS).
        University of Iowa, Iowa City1984
        • Andreasen N.
        The Scale for the Assessment of Negative Symptoms (SANS).
        University of Iowa, Iowa City1983
        • Kirkpatrick B.
        • Buchanan R.W.
        • McKenney P.D.
        • Alphs L.D.
        • Carpenter Jr, W.T.
        The Schedule for the Deficit Syndrome: An instrument for research in schizophrenia.
        Psychiatry Res. 1989; 30: 119-123
        • Addington D.
        • Addington J.
        • Schissel B.
        A depression rating scale for schizophrenics.
        Schizophr Res. 1990; 3: 247-251
        • Lindenmayer J.P.
        • Czobor P.
        • Alphs L.
        • Nathan A.M.
        • Anand R.
        • Islam Z.
        • et al.
        The InterSePT scale for suicidal thinking reliability and validity.
        Schizophr Res. 2003; 63: 161-170
      1. Guy W (1976): Abnormal Involuntary Movement Scale (AIMS). In: ECDEU Assessment Manual for Psychopharmacology. Rockville, MD: U.S. Department of Health, Education, and Education and Welfare, Public Health Service, Alcohol, Drug Abuse and Mental Health Administration, 534–537

        • Barnes T.R.
        The Barnes Akathisia Rating Scale—revisited.
        J Psychopharmacol. 2003; 17: 365-370
        • Simpson G.M.
        • Angus J.W.
        A rating scale for extrapyramidal side effects.
        Acta Psychiatr Scand Suppl. 1970; 212: 11-19
        • Glover G.H.
        • Mueller B.A.
        • Turner J.A.
        • van Erp T.G.
        • Liu T.T.
        • Greve D.N.
        • et al.
        Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies.
        J Magn Reson Imaging. 2012; 36: 39-54
        • Cox R.W.
        AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages.
        Comput Biomed Res. 1996; 29: 162-173
        • Smith S.M.
        • Jenkinson M.
        • Woolrich M.W.
        • Beckmann C.F.
        • Behrens T.E.
        • Johansen-Berg H.
        • et al.
        Advances in functional and structural MR image analysis and implementation as FSL.
        Neuroimage. 2004; 23: S208-219
        • Friedman L.
        • Glover G.H.
        Reducing interscanner variability of activation in a multicenter fMRI study: Controlling for signal-to-fluctuation-noise-ratio (SFNR) differences.
        Neuroimage. 2006; 33: 471-481
        • Jenkinson M.
        • Bannister P.
        • Brady M.
        • Smith S.
        Improved optimization for the robust and accurate linear registration and motion correction of brain images.
        Neuroimage. 2002; 17: 825-841
        • Maldjian J.A.
        • Laurienti P.J.
        • Kraft R.A.
        • Burdette J.H.
        An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets.
        Neuroimage. 2003; 19: 1233-1239
        • Maldjian J.A.
        • Laurienti P.J.
        • Burdette J.H.
        Precentral gyrus discrepancy in electronic versions of the Talairach atlas.
        Neuroimage. 2004; 21: 450-455
        • Purcell S.
        • Neale B.
        • Todd-Brown K.
        • Thomas L.
        • Ferreira M.A.
        • Bender D.
        • et al.
        PLINK: A tool set for whole-genome association and population-based linkage analyses.
        Am J Hum Genet. 2007; 81: 559-575
        • Willemsen M.H.
        • Valles A.
        • Kirkels L.A.
        • Mastebroek M.
        • Olde Loohuis N.
        • Kos A.
        • et al.
        Chromosome 1p21.3 microdeletions comprising DPYD and MIR137 are associated with intellectual disability.
        J Med Genet. 2011; 48: 810-818
        • Weinberger D.R.
        • Berman K.F.
        • Suddath R.
        • Torrey E.F.
        Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: A magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins.
        Am J Psychiatry. 1992; 149: 890-897
        • Wolf D.H.
        • Gur R.C.
        • Valdez J.N.
        • Loughead J.
        • Elliott M.A.
        • Gur R.E.
        • et al.
        Alterations of fronto-temporal connectivity during word encoding in schizophrenia.
        Psychiatry Res. 2007; 154: 221-232
        • Beveridge N.J.
        • Cairns M.J.
        MicroRNA dysregulation in schizophrenia.
        Neurobiol Dis. 2012; 46: 263-271
        • Kwon E.
        • Wang W.
        • Tsai L.H.
        Validation of schizophrenia-associated genes CSMD1, C10orf26, CACNA1C and TCF4 as miR-137 targets.
        Mol Psychiatry. 2013; 18: 11-12
        • Kim A.H.
        • Parker E.K.
        • Williamson V.
        • McMichael G.O.
        • Fanous A.H.
        • Vladimirov V.I.
        Experimental validation of candidate schizophrenia gene ZNF804A as target for hsa-miR-137.
        Schizophr Res. 2012; 141: 60-64
        • Miller B.H.
        • Zeier Z.
        • Xi L.
        • Lanz T.A.
        • Deng S.
        • Strathmann J.
        • et al.
        MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function.
        Proc Natl Acad Sci U S A. 2012; 109: 3125-3130
        • Carter M.T.
        • Nikkel S.M.
        • Fernandez B.A.
        • Marshall C.R.
        • Noor A.
        • Lionel A.C.
        • et al.
        Hemizygous deletions on chromosome 1p21.3 involving the DPYD gene in individuals with autism spectrum disorder.
        Clin Genet. 2010; 80: 435-443
        • Rapoport J.
        • Chavez A.
        • Greenstein D.
        • Addington A.
        • Gogtay N.
        Autism spectrum disorders and childhood-onset schizophrenia: Clinical and biological contributions to a relation revisited.
        J Am Acad Child Adolesc Psychiatry. 2009; 48: 10-18
        • King B.H.
        • Lord C.
        Is schizophrenia on the autism spectrum?.
        Brain Res. 2011; 1380: 34-41
        • Bevan Jones R.
        • Thapar A.
        • Lewis G.
        • Zammit S.
        The association between early autistic traits and psychotic experiences in adolescence.
        Schizophr Res. 2012; 135: 164-169
        • Walton E.
        • Turner J.
        • Gollub R.L.
        • Manoach D.S.
        • Yendiki A.
        • Ho B.C.
        • et al.
        Cumulative genetic risk and prefrontal activity in patients with schizophrenia.
        Schizophr Bull. 2013; 39: 703-711
        • Nixon D.C.
        • Prust M.J.
        • Sambataro F.
        • Tan H.Y.
        • Mattay V.S.
        • Weinberger D.R.
        • et al.
        Interactive effects of DAOA (G72) and catechol-O-methyltransferase on neurophysiology in prefrontal cortex.
        Biol Psychiatry. 2011; 69: 1006-1008
        • Brauns S.
        • Gollub R.L.
        • Roffman J.L.
        • Yendiki A.
        • Ho B.C.
        • Wassink T.H.
        • et al.
        DISC1 is associated with cortical thickness and neural efficiency.
        Neuroimage. 2011; 57: 1591-1600
        • Nothnagel M.
        • Ellinghaus D.
        • Schreiber S.
        • Krawczak M.
        • Franke A.
        A comprehensive evaluation of SNP genotype imputation.
        Hum Genet. 2009; 125: 163-171
        • Xu B.
        • Ionita-Laza I.
        • Roos J.L.
        • Boone B.
        • Woodrick S.
        • Sun Y.
        • et al.
        De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia.
        Nat Genet. 2012; 44: 1365-1369
        • Betel D.
        • Koppal A.
        • Agius P.
        • Sander C.
        • Leslie C.
        Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites.
        Genome Biol. 2010; 11: R90
        • Blokland G.A.
        • McMahon K.L.
        • Hoffman J.
        • Zhu G.
        • Meredith M.
        • Martin N.G.
        • et al.
        Quantifying the heritability of task-related brain activation and performance during the N-back working memory task: A twin fMRI study.
        Biol Psychol. 2008; 79: 70-79
        • Cannon T.D.
        • Thompson P.M.
        • van Erp T.G.
        • Toga A.W.
        • Poutanen V.P.
        • Huttunen M.
        • et al.
        Cortex mapping reveals regionally specific patterns of genetic and disease-specific gray-matter deficits in twins discordant for schizophrenia.
        Proc Natl Acad Sci U S A. 2002; 99: 3228-3233
        • Karlsgodt K.H.
        • Glahn D.C.
        • van Erp T.G.
        • Therman S.
        • Huttunen M.
        • Manninen M.
        • et al.
        The relationship between performance and fMRI signal during working memory in patients with schizophrenia, unaffected co-twins, and control subjects.
        Schizophr Res. 2007; 89: 191-197