Antioxidant Supplementation Ameliorates Molecular Deficits in Smith-Lemli-Opitz Syndrome


      Smith-Lemli-Opitz syndrome (SLOS) is an inborn error of cholesterol biosynthesis characterized by diminished cholesterol and increased 7-dehydrocholesterol (7-DHC) levels. 7-Dehydrocholesterol is highly reactive, giving rise to biologically active oxysterols.


      7-DHC-derived oxysterols were measured in fibroblasts from SLOS patients and an in vivo SLOS rodent model using high-performance liquid chromatography tandem mass spectrometry. Expression of lipid biosynthesis genes was ascertained by quantitative polymerase chain reaction and Western blot. The effects of an antioxidant mixture of vitamin A, coenzyme Q10, vitamin C, and vitamin E were evaluated for their potential to reduce formation of 7-DHC oxysterols in fibroblast from SLOS patients. Finally, the effect of maternal feeding of vitamin E enriched diet was ascertained in the brain and liver of newborn SLOS mice.


      In cultured human SLOS fibroblasts, the antioxidant mixture led to decreased levels of the 7-DHC-derived oxysterol, 3β,5α-dihydroxycholest-7-en-6-one. Furthermore, gene expression changes in SLOS human fibroblasts were normalized with antioxidant treatment. The active ingredient appeared to be vitamin E, as even at low concentrations, it significantly decreased 3β,5α-dihydroxycholest-7-en-6-one levels. In addition, analyzing a mouse SLOS model revealed that feeding a vitamin E enriched diet to pregnant female mice led to a decrease in oxysterol formation in brain and liver tissues of the newborn Dhcr7-knockout pups.


      Considering the adverse effects of 7-DHC-derived oxysterols in neuronal and glial cultures and the positive effects of antioxidants in patient cell cultures and the transgenic mouse model, we believe that preventing formation of 7-DHC oxysterols is critical for countering the detrimental effects of DHCR7 mutations.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Tierney E.
        • Nwokoro N.A.
        • Kelley R.I.
        Behavioral phenotype of RSH/Smith-Lemli-Opitz syndrome.
        Ment Retard Dev Disabil Res Rev. 2000; 6: 131-134
        • Tierney E.
        • Nwokoro N.A.
        • Porter F.D.
        • Freund L.S.
        • Ghuman J.K.
        • Kelley R.I.
        Behavior phenotype in the RSH/Smith-Lemli-Opitz syndrome.
        Am J Med Genet. 2001; 98: 191-200
        • Sikora D.M.
        • Pettit-Kekel K.
        • Penfield J.
        • Merkens L.S.
        • Steiner R.D.
        The near universal presence of autism spectrum disorders in children with Smith-Lemli-Opitz syndrome.
        Am J Med Genet A. 2006; 140: 1511-1518
        • Porter F.D.
        Smith-Lemli-Opitz syndrome: Pathogenesis, diagnosis and management.
        Eur J Hum Genet. 2008; 16: 535-541
        • Fitzky B.U.
        • Witsch-Baumgartner M.
        • Erdel M.
        • Lee J.N.
        • Paik Y.K.
        • Glossmann H.
        • et al.
        Mutations in the Delta7-sterol reductase gene in patients with the Smith-Lemli-Opitz syndrome.
        Proc Natl Acad Sci U S A. 1998; 95: 8181-8186
        • Wassif C.A.
        • Maslen C.
        • Kachilele-Linjewile S.
        • Lin D.
        • Linck L.M.
        • Connor W.E.
        • et al.
        Mutations in the human sterol delta7-reductase gene at 11q12-13 cause Smith-Lemli-Opitz syndrome.
        Am J Hum Genet. 1998; 63: 55-62
        • Waterham H.R.
        • Wijburg F.A.
        • Hennekam R.C.
        • Vreken P.
        • Poll-The B.T.
        • Dorland L.
        • et al.
        Smith-Lemli-Opitz syndrome is caused by mutations in the 7-dehydrocholesterol reductase gene.
        Am J Hum Genet. 1998; 63: 329-338
        • Smith D.W.
        • Lemli L.
        • Opitz J.M.
        A newly recognized syndrome of multiple congenital anomalies.
        J Pediatr. 1964; 64: 210-217
        • Tint G.S.
        • Seller M.
        • Hughes-Benzie R.
        • Batta A.K.
        • Shefer S.
        • Genest D.
        • et al.
        Markedly increased tissue concentrations of 7-dehydrocholesterol combined with low levels of cholesterol are characteristic of the Smith-Lemli-Opitz syndrome.
        J Lipid Res. 1995; 36: 89-95
        • Haas D.
        • Garbade S.F.
        • Vohwinkel C.
        • Muschol N.
        • Trefz F.K.
        • Penzien J.M.
        • et al.
        Effects of cholesterol and simvastatin treatment in patients with Smith-Lemli-Opitz syndrome (SLOS).
        J Inherit Metab Dis. 2007; 30: 375-387
        • Kelley R.I.
        Diagnosis of Smith-Lemli-Opitz syndrome by gas chromatography/mass spectrometry of 7-dehydrocholesterol in plasma, amniotic fluid and cultured skin fibroblasts.
        Clin Chim Acta. 1995; 236: 45-58
        • Bukelis I.
        • Porter F.D.
        • Zimmerman A.W.
        • Tierney E.
        Smith-Lemli-Opitz syndrome and autism spectrum disorder.
        Am J Psychiatry. 2007; 164: 1655-1661
        • Lee R.W.
        • Tierney E.
        Hypothesis: The role of sterols in autism spectrum disorder.
        Autism Res Treat. 2011; 2011: 653570
        • Tierney E.
        • Bukelis I.
        • Thompson R.E.
        • Ahmed K.
        • Aneja A.
        • Kratz L.
        • et al.
        Abnormalities of cholesterol metabolism in autism spectrum disorders.
        Am J Med Genet B Neuropsychiatr Genet. 2006; 141B: 666-668
        • Xu L.
        • Davis T.A.
        • Porter N.A.
        Rate constants for peroxidation of polyunsaturated fatty acids and sterols in solution and in liposomes.
        J Am Chem Soc. 2009; 131: 13037-13044
        • Yin H.
        • Xu L.
        • Porter N.A.
        Free radical lipid peroxidation: Mechanisms and analysis.
        Chem Rev. 2011; 111: 5944-5972
        • Korade Z.
        • Xu L.
        • Mirnics K.
        • Porter N.A.
        Lipid biomarkers of oxidative stress in a genetic mouse model of Smith-Lemli-Opitz syndrome.
        J Inherit Metab Dis. 2013; 36: 113-122
        • Xu L.
        • Liu W.
        • Sheflin L.G.
        • Fliesler S.J.
        • Porter N.A.
        Novel oxysterols observed in tissues and fluids of AY9944-treated rats: A model for Smith-Lemli-Opitz syndrome.
        J Lipid Res. 2011; 52: 1810-1820
        • Xu L.
        • Sheflin L.G.
        • Porter N.A.
        • Fliesler S.J.
        7-Dehydrocholesterol-derived oxysterols and retinal degeneration in a rat model of Smith-Lemli-Opitz syndrome.
        Biochim Biophys Acta. 2012; 1821: 877-883
        • Xu L.
        • Korade Z.
        • Porter N.A.
        Oxysterols from free radical chain oxidation of 7-dehydrocholesterol: Product and mechanistic studies.
        J Am Chem Soc. 2010; 132: 2222-2232
        • Korade Z.
        • Xu L.
        • Shelton R.
        • Porter N.A.
        Biological activities of 7-dehydrocholesterol-derived oxysterols: Implications for Smith-Lemli-Opitz syndrome.
        J Lipid Res. 2010; 51: 3259-3269
        • Xu L.
        • Korade Z.
        • Rosado Jr, D.A.
        • Liu W.
        • Lamberson C.R.
        • Porter N.A.
        An oxysterol biomarker for 7-dehydrocholesterol oxidation in cell/mouse models for Smith-Lemli-Opitz syndrome.
        J Lipid Res. 2011; 52: 1222-1233
        • Xu L.
        • Mirnics K.
        • Bowman A.B.
        • Liu W.
        • Da J.
        • Porter N.A.
        • Korade Z.
        DHCEO accumulation is a critical mediator of pathophysiology in a Smith-Lemli-Opitz syndrome model.
        Neurobiol Dis. 2012; 45: 923-929
        • Xu L.
        • Korade Z.
        • Rosado Jr, D.A.
        • Mirnics K.
        • Porter N.A.
        Metabolism of oxysterols derived from non-enzymatic oxidation of 7-dehydrocholesterol in cells.
        J Lipid Res. 2013; 54: 1135-1143
        • Bendich A.
        • D’Apolito P.
        • Gabriel E.
        • Machlin L.J.
        Interaction of dietary vitamin C and vitamin E on guinea pig immune responses to mitogens.
        J Nutr. 1984; 114: 1588-1593
        • Doba T.
        • Burton G.W.
        • Ingold K.U.
        Antioxidant and co-antioxidant activity of vitamin C. The effect of vitamin C, either alone or in the presence of vitamin E or a water-soluble vitamin E analogue, upon the peroxidation of aqueous multilamellar phospholipid liposomes.
        Biochim Biophys Acta. 1985; 835: 298-303
        • Korade Z.
        • Kenworthy A.K.
        • Mirnics K.
        Molecular consequences of altered neuronal cholesterol biosynthesis.
        J Neurosci Res. 2009; 87: 866-875
        • Storey J.D.
        A direct approach to false discovery rates.
        J R Stat Soc Series B Stat Methodol. 2002; 64: 479-498
        • Benjamini Y.
        • Hochberg Y.
        Controlling the false discovery rate: A practical and powerful approach to multiple testing.
        J R Stat Soc Series B Stat Methodol. 1995; 57: 289-300
        • Lang J.K.
        • Gohil K.
        • Packer L.
        Simultaneous determination of tocopherols, ubiquinols, and ubiquinones in blood, plasma, tissue homogenates, and subcellular fractions.
        Anal Biochem. 1986; 157: 106-116
        • Harrison F.E.
        • Yu S.S.
        • Van Den Bossche K.L.
        • Li L.
        • May J.M.
        • McDonald M.P.
        Elevated oxidative stress and sensorimotor deficits but normal cognition in mice that cannot synthesize ascorbic acid.
        J Neurochem. 2008; 106: 1198-1208
        • Harrison F.E.
        • Allard J.
        • Bixler R.
        • Usoh C.
        • Li L.
        • May J.M.
        • McDonald M.P.
        Antioxidants and cognitive training interact to affect oxidative stress and memory in APP/PSEN1 mice.
        Nutr Neurosci. 2009; 12: 203-218
        • Burton G.W.
        • Cheng S.C.
        • Webb A.
        • Ingold K.U.
        Vitamin E in young and old human red blood cells.
        Biochim Biophys Acta. 1986; 860: 84-90
        • Niki E.
        • Noguchi N.
        Dynamics of antioxidant action of vitamin E.
        Acc Chem Res. 2004; 37: 45-51
        • Traber M.G.
        • Atkinson J.
        Vitamin E, antioxidant and nothing more.
        Free Radic Biol Med. 2007; 43: 4-15
        • Atkinson J.
        • Harroun T.
        • Wassall S.R.
        • Stillwell W.
        • Katsaras J.
        The location and behavior of alpha-tocopherol in membranes.
        Mol Nutr Food Res. 2010; 54: 641-651
        • Azzi A.
        Molecular mechanism of alpha-tocopherol action.
        Free Radic Biol Med. 2007; 43: 16-21
        • Brigelius-Flohe R.
        • Kelly F.J.
        • Salonen J.T.
        • Neuzil J.
        • Zingg J.M.
        • Azzi A.
        The European perspective on vitamin E: Current knowledge and future research.
        Am J Clin Nutr. 2002; 76: 703-716
        • Richards M.J.
        • Nagel B.A.
        • Fliesler S.J.
        Lipid hydroperoxide formation in the retina: Correlation with retinal degeneration and light damage in a rat model of Smith-Lemli-Opitz syndrome.
        Exp Eye Res. 2006; 82: 538-541
        • Rimbach G.
        • Minihane A.M.
        • Majewicz J.
        • Fischer A.
        • Pallauf J.
        • Virgli F.
        • Weinberg P.D.
        Regulation of cell signalling by vitamin E.
        Proc Nutr Soc. 2002; 61: 415-425
        • Zingg J.M.
        Modulation of signal transduction by vitamin E.
        Mol Aspects Med. 2007; 28: 481-506
        • Zingg J.M.
        • Azzi A.
        Non-antioxidant activities of vitamin E.
        Curr Med Chem. 2004; 11: 1113-1133
        • Corrigan Jr, J.J.
        • Marcus F.I.
        Coagulopathy associated with vitamin E ingestion.
        JAMA. 1974; 230: 1300-1301
        • Kitagawa M.
        • Mino M.
        Effects of elevated d-alpha(RRR)-tocopherol dosage in man.
        J Nutr Sci Vitaminol (Tokyo). 1989; 35: 133-142
        • Liede K.E.
        • Haukka J.K.
        • Saxen L.M.
        • Heinonen O.P.
        Increased tendency towards gingival bleeding caused by joint effect of alpha-tocopherol supplementation and acetylsalicylic acid.
        Ann Med. 1998; 30: 542-546
        • Miller 3rd, E.R.
        • Pastor-Barriuso R.
        • Dalal D.
        • Riemersma R.A.
        • Appel L.J.
        • Guallar E.
        Meta-analysis: High-dosage vitamin E supplementation may increase all-cause mortality.
        Ann Intern Med. 2005; 142: 37-46
        • Dju M.Y.
        • Mason K.E.
        • Filer Jr, L.J.
        Vitamin E (tocopherol) in human fetuses and placentae.
        Etudes Neonatales. 1952; 1: 49-62
        • Leonard P.J.
        • Doyle E.
        • Harrington W.
        Levels of vitamin E in the plasma of newborn infants and of the mothers.
        Am J Clin Nutr. 1972; 25: 480-484
        • Wright S.W.
        • Filer Jr, L.J.
        • Mason K.E.
        Vitamin E blood levels in premature and full term infants.
        Pediatrics. 1951; 7: 386-393