Advertisement
Archival Report| Volume 75, ISSUE 5, P386-397, March 01, 2014

A Genome-wide Association Analysis of a Broad Psychosis Phenotype Identifies Three Loci for Further Investigation

  • Psychosis Endophenotypes International Consortium
    *
    Author Footnotes
    a A full list of individuals who qualify for authorship, along with their affiliations, is provided in the Acknowledgments
    ,
    Author Footnotes
    b A full list of members of the PEIC and WTCCC2 is provided in the Acknowledgments
  • Wellcome Trust Case-Control Consortium 2
    Author Footnotes
    a A full list of individuals who qualify for authorship, along with their affiliations, is provided in the Acknowledgments
    ,
    Author Footnotes
    b A full list of members of the PEIC and WTCCC2 is provided in the Acknowledgments
  • Author Footnotes
    a A full list of individuals who qualify for authorship, along with their affiliations, is provided in the Acknowledgments
    b A full list of members of the PEIC and WTCCC2 is provided in the Acknowledgments

      Background

      Genome-wide association studies (GWAS) have identified several loci associated with schizophrenia and/or bipolar disorder. We performed a GWAS of psychosis as a broad syndrome rather than within specific diagnostic categories.

      Methods

      1239 cases with schizophrenia, schizoaffective disorder, or psychotic bipolar disorder; 857 of their unaffected relatives, and 2739 healthy controls were genotyped with the Affymetrix 6.0 single nucleotide polymorphism (SNP) array. Analyses of 695,193 SNPs were conducted using UNPHASED, which combines information across families and unrelated individuals. We attempted to replicate signals found in 23 genomic regions using existing data on nonoverlapping samples from the Psychiatric GWAS Consortium and Schizophrenia-GENE-plus cohorts (10,352 schizophrenia patients and 24,474 controls).

      Results

      No individual SNP showed compelling evidence for association with psychosis in our data. However, we observed a trend for association with same risk alleles at loci previously associated with schizophrenia (one-sided p = .003). A polygenic score analysis found that the Psychiatric GWAS Consortium’s panel of SNPs associated with schizophrenia significantly predicted disease status in our sample (p = 5 × 10–14) and explained approximately 2% of the phenotypic variance.

      Conclusions

      Although narrowly defined phenotypes have their advantages, we believe new loci may also be discovered through meta-analysis across broad phenotypes. The novel statistical methodology we introduced to model effect size heterogeneity between studies should help future GWAS that combine association evidence from related phenotypes. Applying these approaches, we highlight three loci that warrant further investigation. We found that SNPs conveying risk for schizophrenia are also predictive of disease status in our data.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • van Os J.
        • Hanssen M.
        • Bijl R.V.
        • Ravelli A.
        Strauss (1969) revisited: A psychosis continuum in the general population?.
        Schizophr Res. 2000; 45: 11-20
        • van Os J.
        • Hanssen M.
        • Bijl R.V.
        • Vollebergh W.
        Prevalence of psychotic disorder and community level of psychotic symptoms: An urban-rural comparison.
        Arch Gen Psychiatry. 2001; 58: 663-668
        • Jablensky A.
        • Sartorius N.
        • Ernberg G.
        • Anker M.
        • Korten A.
        • Cooper J.E.
        • et al.
        Schizophrenia—manifestations, incidence and course in different cultures—a World Health Organization ten-country study.
        Psychological Med. 1992; 20: 1-97
        • Murray R.
        • Jones P.
        • Susser E.
        • Van Os J.
        • Cannon M.
        The Epidemiology of Schizophrenia. Cambridge University Press, Cambridge2003
        • Perälä J.
        • Suvisaari J.
        • Saarni S.I.
        • Kuoppasalmi K.
        • Isometsä E.
        • Pirkola S.
        • et al.
        Lifetime prevalence of psychotic and bipolar I disorders in a general population.
        Arch Gen Psychiatry. 2007; 64: 19-28
        • Bogren M.
        • Mattisson C.
        • Isberg P.E.
        • Nettelbladt P.
        How common are psychotic and bipolar disorders? A 50-year follow-up of the Lundby population.
        Nord J Psychiatry. 2009; 63: 336-346
        • WHO
        The World Health Report 2001—Mental health, new understanding, new hope.
        Eur J Psychiatry. 2002; 16 (117–117)
        • Sullivan P.F.
        • Daly M.J.
        • O’Donovan M.
        Genetic architectures of psychiatric disorders: the emerging picture and its implications.
        Nat Rev Genet. 2012; 13: 537-551
        • Rees E.
        • Kirov G.
        • O’Donovan M.C.
        • Owen M.J.
        De novo mutation in schizophrenia.
        Schizophr Bull. 2012; 38: 377-381
        • Sebat J.
        • Levy D.L.
        • McCarthy S.E.
        Rare structural variants in schizophrenia: One disorder, multiple mutations; one mutation, multiple disorders.
        Trends Genet. 2009; 25: 528-535
        • Malhotra D.
        • McCarthy S.
        • Michaelson J.J.
        • Vacic V.
        • Burdick K.E.
        • Yoon S.
        • et al.
        High frequencies of de novo CNVs in bipolar disorder and schizophrenia.
        Neuron. 2011; 72: 951-963
        • Ripke S.
        • Sanders A.R.
        • Kendler K.S.
        • Levinson D.F.
        • Sklar P.
        • Holmans P.A.
        • et al.
        Genome-wide association study identifies five new schizophrenia loci.
        Nat Genet. 2011; 43: 969-976
        • Alkelai A.
        • Lupoli S.
        • Greenbaum L.
        • Giegling I.
        • Kohn Y.
        • Sarner-Kanyas K.
        • et al.
        Identification of new schizophrenia susceptibility loci in an ethnically homogeneous, family-based, Arab-Israeli sample.
        FASEB J. 2011; 25: 4011-4023
        • Athanasiu L.
        • Mattingsdal M.
        • Kähler A.K.
        • Brown A.
        • Gustafsson O.
        • Agartz I.
        • et al.
        Gene variants associated with schizophrenia in a Norwegian genome-wide study are replicated in a large European cohort.
        J Psychiatr Research. 2010; 44: 748-753
        • Green E.K.
        • Grozeva D.
        • Jones I.
        • Jones L.
        • Kirov G.
        • Caesar S.
        • et al.
        The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia.
        Mol Psychiatry. 2010; 15: 1016-1022
        • Kirov G.
        • Zaharieva I.
        • Georgieva L.
        • Moskvina V.
        • Nikolov I.
        • Cichon S.
        • et al.
        A genome-wide association study in 574 schizophrenia trios using DNA pooling.
        Mol Psychiatry. 2008; 14: 796-803
        • Need A.C.
        • Ge D.
        • Weale M.E.
        • Maia J.
        • Feng S.
        • Heinzen E.L.
        • et al.
        A genome-wide investigation of SNPs and CNVs in schizophrenia.
        PLoS Genet. 2009; 5: e1000373
        • O’Donovan M.C.
        • Craddock N.
        • Norton N.
        • Williams H.
        • Peirce T.
        • Moskvina V.
        • et al.
        Identification of loci associated with schizophrenia by genome-wide association and follow-up.
        Nat Genet. 2008; 40: 1053-1055
        • O’Donovan M.C.
        • Norton N.
        • Williams H.
        • Peirce T.
        • Moskvina V.
        • Nikolov I.
        • et al.
        Analysis of 10 independent samples provides evidence for association between schizophrenia and a SNP flanking fibroblast growth factor receptor 2.
        Mol Psychiatry. 2009; 14: 30-36
        • Sachdev P.
        • Smith J.S.
        • Cathcart S.
        Schizophrenia-like psychosis following traumatic brain injury: A chart-based descriptive and case–control study.
        Psychol Med. 2001; 31: 231-239
        • Shi Y.
        • Li Z.
        • Xu Q.
        • Wang T.
        • Li T.
        • Shen J.
        • et al.
        Common variants on 8p12 and 1q24.2 confer risk of schizophrenia.
        Nat Genet. 2011; 43: 1224-1227
        • Shifman S.
        • Johannesson M.
        • Bronstein M.
        • Chen S.X.
        • Collier D.A.
        • Craddock N.J.
        • et al.
        Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women.
        PLoS Genet. 2008; 4: e28
        • Shi J.
        • Levinson D.F.
        • Duan J.
        • Sanders A.R.
        • Zheng Y.
        • Pe’er I.
        • et al.
        Common variants on chromosome 6p22.1 are associated with schizophrenia.
        Nature. 2009; 460: 753-757
        • Stefansson H.
        • Ophoff R.A.
        • Steinberg S.
        • Andreassen O.A.
        • Cichon S.
        • Rujescu D.
        • et al.
        Common variants conferring risk of schizophrenia.
        Nature. 2009; 460: 744-747
        • Steinberg S.
        • Mors O.
        • Borglum A.D.
        • Gustafsson O.
        • Werge T.
        • Mortensen P.B.
        • et al.
        Expanding the range of ZNF804A variants conferring risk of psychosis.
        Mol Psychiatry. 2011; 16: 59-66
        • Purcell S.M.
        • Wray N.R.
        • Stone J.L.
        • Visscher P.M.
        • O’Donovan M.C.
        • Sullivan P.F.
        • et al.
        Common polygenic variation contributes to risk of schizophrenia and bipolar disorder.
        Nature. 2009; 460: 748-752
        • Irish Schizophrenia Genomics Consortium, Wellcome Trust Case-Control Consortium 2
        Genome-wide association study implicates HLA-C*01:02 as a risk factor at the major histocompatibility complex locus in schizophrenia.
        Biol Psychiatry. 2012; 72: 620-628
        • Sklar P.
        • Ripke S.
        • Scott L.J.
        • Andreassen O.A.
        • Cichon S.
        • Craddock N.
        • et al.
        Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4.
        Nat Genet. 2011; 43: 977-983
        • Chen D.T.
        • Jiang X.
        • Akula N.
        • Shugart Y.Y.
        • Wendland J.R.
        • Steele C.J.M.
        • et al.
        Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder.
        Mol Psychiatry. 2011; 18: 195-205
        • Cichon S.
        • Muhleisen T.W.
        • Degenhardt F.A.
        • Mattheisen M.
        • Miro X.
        • Strohmaier J.
        • et al.
        Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder.
        Am J Hum Genet. 2011; 88: 372-381
      1. Craddock N, Jones L, Jones IR, Kirov G, Green EK, Grozeva D, et al. (2008): Strong genetic evidence for a selective influence of GABA(A) receptors on a component of the bipolar disorder phenotype. Mol Psychiatry 15:146–153

        • Djurovic S.
        • Gustafsson O.
        • Mattingsdal M.
        • Athanasiu L.
        • Bjella T.
        • Tesli M.
        • et al.
        A genome-wide association study of bipolar disorder in Norwegian individuals, followed by replication in Icelandic sample.
        J Affect Disord. 2010; 126: 312-316
        • Ferreira M.A.
        • O’Donovan M.C.
        • Meng Y.A.
        • Jones I.R.
        • Ruderfer D.M.
        • Jones L.
        • et al.
        Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder.
        Nat Genet. 2008; 40: 1056-1058
        • Jiang Y.
        • Zhang H.
        Propensity score-based nonparametric test revealing genetic variants underlying bipolar disorder.
        Genet Epidemiol. 2011; 35: 125-132
        • Kerner B.
        • Lambert C.G.
        • Muthén B.O.
        Genome-wide association study in bipolar patients stratified by co-morbidity.
        PLoS One. 2011; 6: e28477
        • Lee M.T.M.
        • Chen C.H.
        • Lee C.S.
        • Chen C.C.
        • Chong M.Y.
        • Ouyang W.C.
        • et al.
        Genome-wide association study of bipolar I disorder in the Han Chinese population.
        Mol Psychiatry. 2011; 16: 548-556
        • Liu Y.
        • Blackwood D.H.
        • Caesar S.
        • de Geus E.J.
        • Farmer A.
        • Ferreira M.A.
        • et al.
        Meta-analysis of genome-wide association data of bipolar disorder and major depressive disorder.
        Mol Psychiatry. 2011; 16: 2-4
        • Scott L.J.
        • Muglia P.
        • Kong X.Q.
        • Guan W.
        • Flickinger M.
        • Upmanyu R.
        • et al.
        Genome-wide association and meta-analysis of bipolar disorder in individuals of European ancestry.
        Proc Natl Acad Sci U S A. 2009; 106: 7501-7506
        • Sklar P.
        • Smoller J.W.
        • Fan J.
        • Ferreira M.A.
        • Perlis R.H.
        • Chambert K.
        • et al.
        Whole-genome association study of bipolar disorder.
        Mol Psychiatry. 2008; 13: 558-569
        • Smith E.N.
        • Bloss C.S.
        • Badner J.A.
        • Barrett T.
        • Belmonte P.L.
        • Berrettini W.
        • et al.
        Genome-wide association study of bipolar disorder in European American and African American individuals.
        Mol Psychiatry. 2009; 14: 755-763
        • Smith E.N.
        • Koller D.L.
        • Panganiban C.
        • Szelinger S.
        • Zhang P.
        • Badner J.A.
        • et al.
        Genome-wide association of bipolar disorder suggests an enrichment of replicable associations in regions near genes.
        PLoS Genet. 2011; 7: e1002134
        • Purcell S.
        • Neale B.
        • Todd-Brown K.
        • Thomas L.
        • Ferreira M.
        • Bender D.
        • et al.
        PLINK: A toolset for whole-genome association and population-based linkage analysis.
        Am J Hum Genet. 2007; 81: 559-575
        • Ruderfer D.M.
        • Kirov G.
        • Chambert K.
        • Moran J.L.
        • Owen M.J.
        • O’Donovan M.C.
        • et al.
        A family-based study of common polygenic variation and risk of schizophrenia.
        Mol Psychiatry. 2011; 16: 887-888
        • Lander E.S.
        Initial impact of the sequencing of the human genome.
        Nature. 2011; 470: 187-197
        • Bouzigon E.
        • Forabosco P.
        • Koppelman G.H.
        • Cookson W.O.C.M.
        • Dizier M.H.
        • Duffy D.L.
        • et al.
        Meta-analysis of 20 genome-wide linkage studies evidenced new regions linked to asthma and atopy.
        Eur J Hum Genet. 2010; 18: 700-706
        • Lewis C.M.
        • Ng M.Y.
        • Butler A.W.
        • Cohen-Woods S.
        • Uher R.
        • Pirlo K.
        • et al.
        Genome-wide association study of major recurrent depression in the U.K. population.
        Am J Psychiatry. 2010; 167: 949-957
        • Linscott R.J.
        • van Os J.
        Systematic reviews of categorical versus continuum models in psychosis: Evidence for discontinuous subpopulations underlying a psychometric continuum. Implications for DSM-V, DSM-VI, and DSM-VII.
        Annu Rev Clin Psychol. 2010; 6: 391-419
        • Kempton M.J.
        • Geddes J.R.
        • Ettinger U.
        • Williams S.C.
        • Grasby P.M.
        Meta-analysis, database, and meta-regression of 98 structural imaging studies in bipolar disorder.
        Arch Gen Psychiatry. 2008; 65: 1017-1032
        • Bramon E.
        • Sham P.
        The common genetic liability between schizophrenia and bipolar disorder: A review.
        Curr Psychiatry Rep. 2001; 3: 332-337
        • Bramon E.
        • Sham P.
        The shared genetic architecture which underlies schizophrenia and bipolar disorder.
        in: McDonald C. Schulze K. Murray R. Wright P. Schizophrenia, Challenging the Orthodox. Taylor & Francis, London2004: 173-181
        • Sullivan P.
        • Cichon S.
        • Craddock N.
        • Daly M.
        • Faraone S.V.
        • Gejman P.V.
        • et al.
        A framework for interpreting genome-wide association studies of psychiatric disorders.
        Mol Psychiatry. 2009; 14: 10-17
        • Williams N.M.
        • Zaharieva I.
        • Martin A.
        • Langley K.
        • Mantripragada K.
        • Fossdal R.
        • et al.
        Rare chromosomal deletions and duplications in attention-deficit hyperactivity disorder: A genome-wide analysis.
        Lancet. 2010; 376: 1401-1408
        • Owen M.J.
        • O’Donovan M.C.
        • Thapar A.
        • Craddock N.
        Neurodevelopmental hypothesis of schizophrenia.
        Br J Psychiatry. 2011; 198: 173-175
        • Huang J.
        • Perlis R.H.
        • Lee P.H.
        • Rush A.J.
        • Fava M.
        • Sachs G.S.
        • et al.
        Cross-disorder genomewide analysis of schizophrenia, bipolar disorder, and depression.
        Am J Psychiatry. 2010; 167: 1254-1263
        • Williams H.J.
        • Craddock N.
        • Russo G.
        • Hamshere M.L.
        • Moskvina V.
        • Dwyer S.
        • et al.
        Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries.
        Hum Mol Genet. 2011; 20: 387-391
        • Sullivan P.F.
        The Psychiatric GWAS Consortium: Big science comes to psychiatry.
        Neuron. 2010; 68: 182-186
        • Wray N.R.
        • Pergadia M.L.
        • Blackwood D.H.R.
        • Penninx BWJH
        • Gordon S.D.
        • Nyholt D.R.
        • et al.
        Genome-wide association study of major depressive disorder: New results, meta-analysis, and lessons learned.
        Mol Psychiatry. 2012; 17: 36-48
        • Owen M.J.
        Intellectual disability and major psychiatric disorders: A continuum of neurodevelopmental causality.
        Br J Psychiatry. 2012; 200: 268-269
        • Sullivan P.F.
        Puzzling over schizophrenia: schizophrenia as a pathway disease.
        Nat Med. 2012; 18: 210-211
        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders, 4th ed., text rev.
        American Psychiatric Association, Washington, DC2000
        • Wing J.K.
        • Babor T.
        • Brugha T.
        • Burke J.
        • Cooper J.E.
        • Giel R.
        • et al.
        SCAN. Schedules for Clinical Assessment in Neuropsychiatry.
        Arch Gen Psychiatry. 1990; 47: 589-593
        • Endicott J.
        • Spitzer R.L.
        A diagnostic interview: The schedule for affective disorders and schizophrenia.
        Arch Gen Psychiatry. 1978; 35: 837-844
        • Spitzer R.L.
        • Williams J.B.W.
        • Gibbon M.
        • First M.B.
        The Structured Clinical Interview for DSM-III-R (SCID). 1. History, rationale, and description.
        Arch Gen Psychiatry. 1992; 49: 624-629
        • Marchini J.
        • Howie B.
        • Myers S.
        • McVean G.
        • Donnelly P.
        A new multipoint method for genome-wide association studies by imputation of genotypes.
        Nat Genet. 2007; 39: 906-913
        • Wellcome Trust Case Control Consortium
        Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.
        Nature. 2007; 447: 661-U667
        • Wigginton J.E.
        • Abecasis G.R.
        PEDSTATS: Descriptive statistics, graphics and quality assessment for gene mapping data.
        Bioinformatics. 2005; 21: 3445-3447
        • Morris J.A.
        • Randall J.C.
        • Maller J.B.
        • Barrett J.C.
        Evoker: A visualization tool for genotype intensity data.
        Bioinformatics. 2010; 26: 1786-1787
        • Patterson N.
        • Price A.L.
        • Reich D.
        Population structure and eigenanalysis.
        PLoS Genet. 2006; 2: e190
        • Price A.L.
        • Patterson N.J.
        • Plenge R.M.
        • Weinblatt M.E.
        • Shadick N.A.
        • Reich D.
        Principal components analysis corrects for stratification in genome-wide association studies.
        Nat Genet. 2006; 38: 904-909
        • Devlin B.
        • Roeder K.
        • Wasserman L.
        Genomic control, a new approach to genetic-based association studies.
        Theor Popul Biol. 2001; 60: 155-166
        • Dudbridge F.
        Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data.
        Hum Hered. 2008; 66: 87-98
        • Hindorff L.A.
        • Sethupathy P.
        • Junkins H.A.
        • Ramos E.M.
        • Mehta J.P.
        • Collins F.S.
        • et al.
        Potential etiologic and functional implications of genome-wide association loci for human diseases and traits.
        Proc Natl Acad Sci. 2009; 106: 9362-9367
        • The 1000 Genomes Project Consortium
        A map of human genome variation from population-scale sequencing.
        Nature. 2010; 467: 1061-1073
        • Johnson A.D.
        • Handsaker R.E.
        • Pulit S.L.
        • Nizzari M.M.
        • O’Donnell C.J.
        • de Bakker P.I.
        SNAP: A web-based tool for identification and annotation of proxy SNPs using HapMap.
        Bioinformatics. 2008; 24: 2938-2939
        • Steinberg S.
        • de Jong S.
        • Andreassen O.A.
        • Werge T.
        • Børglum A.D.
        • Mors O.
        • et al.
        Common variants at VRK2 and TCF4 conferring risk of schizophrenia.
        Hum Mol Genet. 2011; 20: 4076-4081
        • McMahon F.J.
        • Akula N.
        • Schulze T.G.
        • Muglia P.
        • Tozzi F.
        • Detera-Wadleigh S.D.
        • et al.
        Meta-analysis of genome-wide association data identifies a risk locus for major mood disorders on 3p21.1.
        Nat Genet. 2010; 42: 128-131
        • Liou Y.-J.
        • Wang H.-H.
        • Lee M.-T.M.
        • Wang S.-C.
        • Chiang H.-L.
        • Chen C.-C.
        • et al.
        Genome-wide association study of treatment refractory schizophrenia in Han Chinese.
        PLoS One. 2012; 7: e33598
        • Stefansson H.
        • Rujescu D.
        • Cichon S.
        • Pietilainen O.P.
        • Ingason A.
        • Steinberg S.
        • et al.
        Large recurrent microdeletions associated with schizophrenia.
        Nature. 2008; 455: 232-236
        • Li T.
        • Li Z.
        • Chen P.
        • Zhao Q.
        • Wang T.
        • Huang K.
        • et al.
        Common variants in major histocompatibility complex region and TCF4 gene are significantly associated with schizophrenia in Han Chinese.
        Biol Psychiatry. 2010; 68: 671-673
        • Yue W.-H.
        • Wang H.-F.
        • Sun L.-D.
        • Tang F.-L.
        • Liu Z.-H.
        • Zhang H.-X.
        • et al.
        Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2.
        Nat Genet. 2011; 43: 1228-1231
        • Wang K.-S.
        • Liu X.-F.
        • Aragam N.
        A genome-wide meta-analysis identifies novel loci associated with schizophrenia and bipolar disorder.
        Schizophr Res. 2010; 124: 192-199
        • Bergen S.E.
        • O’Dushlaine C.T.
        • Ripke S.
        • Lee P.H.
        • Ruderfer D.M.
        • Akterin S.
        • et al.
        Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder.
        Mol Psychiatry. 2012; 17: 880-886
        • Schulze T.G.
        • Detera-Wadleigh S.D.
        • Akula N.
        • Gupta A.
        • Kassem L.
        • Steele J.
        • et al.
        Two variants in Ankyrin 3 (ANK3) are independent genetic risk factors for bipolar disorder.
        Mol Psychiatry. 2009; 14: 487-491
        • Lett T.A.P.
        • Zai C.C.
        • Tiwari A.K.
        • Shaikh S.A.
        • Likhodi O.
        • Kennedy J.L.
        • et al.
        ANK3, CACNA1C and ZNF804A gene variants in bipolar disorders and psychosis subphenotype.
        World J Biol Psychiatry. 2011; 12: 392-397
        • Takata A.
        • Kim S.H.
        • Ozaki N.
        • Iwata N.
        • Kunugi H.
        • Inada T.
        • et al.
        Association of ANK3 with bipolar disorder confirmed in East Asia.
        Am J Med Genet B Neuropsychiatr Genet. 2011; 156: 312-315
        • Tesli M.
        • Koefoed P.
        • Athanasiu L.
        • Mattingsdal M.
        • Gustafsson O.
        • Agartz I.
        • et al.
        Association analysis of ANK3 gene variants in Nordic bipolar disorder and schizophrenia case–control samples.
        Am J Med Genet B Neuropsychiatr Genet. 2011; 156: 969-974
        • Guan F.
        • Wei S.
        • Feng J.
        • Zhang C.
        • Xing B.
        • Zhang H.
        • et al.
        Association study of a new schizophrenia susceptibility locus of 10q24.32–33 in a Han Chinese population.
        Schizophr Res. 2012; 138: 63-68
        • Smith R.L.
        • Knight D.
        • Williams H.
        • Dwyer S.
        • Richards A.
        • Kirov G.
        • et al.
        Analysis of neurogranin (NRGN) in schizophrenia.
        Am J Med Genet B Neuropsychiatr Genet. 2011; 156: 532-535
        • Nyegaard M.
        • Demontis D.
        • Foldager L.
        • Hedemand A.
        • Flint T.J.
        • Sorensen K.M.
        • et al.
        CACNA1C (rs1006737) is associated with schizophrenia.
        Mol Psychiatry. 2010; 15: 119-121
        • Baum A.E.
        • Akula N.
        • Cabanero M.
        • Cardona I.
        • Corona W.
        • Klemens B.
        • et al.
        A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder.
        Mol Psychiatry. 2007; 13: 197-207
        • Baum A.E.
        • Hamshere M.
        • Green E.
        • Cichon S.
        • Rietschel M.
        • Noethen M.M.
        • et al.
        Meta-analysis of two genome-wide association studies of bipolar disorder reveals important points of agreement.
        Mol Psychiatry. 2008; 13: 466-467
        • Yosifova A.
        • Mushiroda T.
        • Kubo M.
        • Takahashi A.
        • Kamatani Y.
        • Kamatani N.
        • et al.
        Genome-wide association study on bipolar disorder in the Bulgarian population.
        Genes Brain Behav. 2011; 10: 789-797
        • Ollila H.M.
        • Soronen P.
        • Silander K.
        • Palo O.M.
        • Kieseppa T.
        • Kaunisto M.A.
        • et al.
        Findings from bipolar disorder genome-wide association studies replicate in a Finnish bipolar family-cohort.
        Mol Psychiatry. 2008; 14: 351-353
        • Tesli M.
        • Athanasiu L.
        • Mattingsdal M.
        • Kähler A.K.
        • Gustafsson O.
        • Andreassen B.K.
        • et al.
        Association analysis of PALB2 and BRCA2 in bipolar disorder and schizophrenia in a Scandinavian case–control sample.
        Am J Med Genet B Neuropsychiatr Genet. 2010; 153B: 1276-1282
        • Mühleisen T.W.
        • Mattheisen M.
        • Strohmaier J.
        • Degenhardt F.
        • Priebe L.
        • Schultz C.C.
        • et al.
        Association between schizophrenia and common variation in neurocan (NCAN), a genetic risk factor for bipolar disorder.
        Schizophr Res. 2012; 138: 69-73
        • Cardno A.
        • Gottesman I.
        Twin studies of schizophrenia: From bow-and-arrow concordances to star wars mx and functional genomics.
        Am J Med Genet B Neuropsychiatr Genet. 2000; 97: 12-17
        • Cardno A.G.
        • Rijsdijk F.V.
        • Sham P.C.
        • Murray R.M.
        • McGuffin P.
        A twin study of genetic relationships between psychotic symptoms.
        Am J Psychiatry. 2002; 159: 539-545
        • Sullivan P.F.
        • Kendler K.S.
        • Neale M.C.
        Schizophrenia as a complex trait—evidence from a meta-analysis of twin studies.
        Arch Gen Psychiatry. 2003; 60: 1187-1192
        • McGuffin P.
        Gene polymorphisms and behavior.
        Pediatr Blood Cancer. 2007; 48: 736-737
        • Lichtenstein P.
        • Yip B.H.
        • Bjork C.
        • Pawitan Y.
        • Cannon T.D.
        • Sullivan P.F.
        • et al.
        Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: A population-based study.
        Lancet. 2009; 373: 234-239
        • Antonarakis S.E.
        • Chakravarti A.
        • Cohen J.C.
        • Hardy J.
        Mendelian disorders and multifactorial traits: The big divide or one for all?.
        Nat Rev Genet. 2010; 11: 380-384
        • Hardy J.
        • Low N.
        • Singleton A.
        Whole genome association studies: deciding when persistence becomes perseveration.
        Am J Med Genet B Neuropsychiatr Genet. 2008; 147B: 131-133
        • Hardy J.
        • Low N.C.
        Genes and environment in psychiatry: Winner’s curse or cure?.
        Arch Gen Psychiatry. 2011; 68: 455-456
        • Owen M.J.
        • Craddock N.
        • O’Donovan M.C.
        Suggestion of roles for both common and rare risk variants in genome-wide studies of schizophrenia.
        Arch Gen Psychiatry. 2010; 67: 667-673
        • Bellenguez C.
        • Bevan S.
        • Gschwendtner A.
        • Spencer C.C.
        • Burgess A.I.
        • Pirinen M.
        • et al.
        Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke.
        Nat Genet. 2012; 44: 328-333
        • Sawcer S.
        • Hellenthal G.
        • Pirinen M.
        • Spencer C.C.
        • Patsopoulos N.A.
        • Moutsianas L.
        • et al.
        Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.
        Nature. 2011; 476: 214-219
        • Spencer C.C.
        • Plagnol V.
        • Strange A.
        • Gardner M.
        • Paisan-Ruiz C.
        • Band G.
        • et al.
        Dissection of the genetics of Parkinson’s disease identifies an additional association 5’ of SNCA and multiple associated haplotypes at 17q21.
        Hum Mol Genet. 2011; 20: 345-353
        • Burton P.R.
        • Hansell A.L.
        • Fortier I.
        • Manolio T.A.
        • Khoury M.J.
        • Little J.
        • et al.
        Size matters: Just how big is BIG?: Quantifying realistic sample size requirements for human genome epidemiology.
        Int J Epidemiol. 2009; 38: 263-273
        • Cichon S.
        • Craddock N.
        • Daly M.
        • Faraone S.V.
        • Gejman P.V.
        • Kelsoe J.
        • et al.
        Genomewide association studies: History, rationale, and prospects for psychiatric disorders.
        Am J Psychiatry. 2009; 166: 540-556
        • Kirov G.
        • O’Donovan M.C.
        • Owen M.J.
        Finding schizophrenia genes.
        J Clin Invest. 2005; 115: 1440-1448
        • Kirov G.
        • Rujescu D.
        • Ingason A.
        • Collier D.A.
        • O’Donovan M.C.
        • Owen M.J.
        Neurexin 1 (NRXN1) deletions in schizophrenia.
        Schizophr Bull. 2009; 35: 851-854
        • Vacic V.
        • McCarthy S.
        • Malhotra D.
        • Murray F.
        • Chou H.H.
        • Peoples A.
        • et al.
        Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia.
        Nature. 2011; 471: 499-503
        • McCarthy S.E.
        • Makarov V.
        • Kirov G.
        • Addington A.M.
        • McClellan J.
        • Yoon S.
        • et al.
        Microduplications of 16p11.2 are associated with schizophrenia.
        Nat Genet. 2009; 41: 1223-1227
        • Ioannidis J.P.
        Why most discovered true associations are inflated.
        Epidemiology. 2008; 19: 640-648
        • Zollner S.
        • Pritchard J.K.
        Overcoming the winner’s curse: Estimating penetrance parameters from case-control data.
        Am J Hum Genet. 2007; 80: 605-615