Advertisement

L-DOPA Treatment Selectively Restores Spine Density in Dopamine Receptor D2–Expressing Projection Neurons in Dyskinetic Mice

      Background

      L-3,4-dihydroxyphenylalanine (L-DOPA)–induced dyskinesia is an incapacitating complication of L-DOPA therapy that affects most patients with Parkinson’s disease. Previous work indicating that molecular sensitization to dopamine receptor D1 (D1R) stimulation is involved in dyskinesias prompted us to perform electrophysiological recordings of striatal projection “medium spiny neurons” (MSN). Moreover, because enhanced D1R signaling in drug abuse induces changes in spine density in striatum, we investigated whether the dyskinesia is related to morphological changes in MSNs.

      Methods

      Wild-type and bacterial artificial chromosome transgenic mice (D1R-tomato and D2R–green fluorescent protein) mice were lesioned with 6-hydroxydopamine and subsequently treated with L-DOPA to induce dyskinesia. Functional, molecular, and structural changes were assessed in corticostriatal slices. Individual MSNs injected with Lucifer-Yellow were detected by immunohistochemistry for three-dimensional reconstructions with Neurolucida software. Intracellular current-clamp recordings with high-resistance micropipettes were used to characterize electrophysiological parameters.

      Results

      Both D1R-MSNs and D2R-MSNs showed diminished spine density in totally denervated striatal regions in parkinsonian mice. Chronic L-DOPA treatment, which induced dyskinesia and aberrant FosB expression, restored spine density in D2R-MSNs but not in D1R-MSNs. In basal conditions, MSNs are more excitable in parkinsonian than in sham mice, and excitability decreases toward normal values after L-DOPA treatment. Despite this normalization of basal excitability, in dyskinetic mice, the selective D1R agonist SKF38393 increased the number of evoked action potentials in MSNs, compared with sham animals.

      Conclusions

      Chronic L-DOPA induces abnormal spine re-growth exclusively in D2R-MSNs and robust supersensitization to D1R-activated excitability in denervated striatal MSNs. These changes might constitute the anatomical and electrophysiological substrates of dyskinesia.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kish S.J.
        • Shannak K.
        • Hornykiewicz O.
        Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications.
        N Engl J Med. 1988; 318: 876-880
        • Nutt J.G.
        Response to L-dopa in PD: The long and the short of it.
        Neurology. 2000; 54: 1884-1885
        • McNeill T.H.
        • Brown S.A.
        • Rafols J.A.
        • Shoulson I.
        Atrophy of medium spiny I striatal dendrites in advanced Parkinson’s disease.
        Brain Res. 1988; 455: 148-152
        • Stephens B.
        • Mueller A.J.
        • Shering A.F.
        • Hood S.H.
        • Taggart P.
        • Arbuthnott G.W.
        • et al.
        Evidence of a breakdown of corticostriatal connections in Parkinson’s disease.
        Neurosci. 2005; 132: 741-754
        • Zaja-Milatovic S.
        • Milatovic D.
        • Schantz A.M.
        • Zhang J.
        • Montine K.S.
        • Samii A.
        • et al.
        Dendritic degeneration in neostriatal medium spiny neurons in Parkinson disease.
        Neurology. 2005; 64: 545-547
        • Ingham C.A.
        • Hood S.H.
        • Arbuthnott G.W.
        Spine density on neostriatal neurones changes with 6-hydroxydopamine lesions and with age.
        Brain Res. 1989; 503: 334-338
        • Ingham C.A.
        • Hood S.H.
        • Taggart P.
        • Arbuthnott G.W.
        Plasticity of synapses in the rat neostriatum after unilateral lesion of the nigrostriatal dopaminergic pathway.
        J Neurosci. 1998; 18: 4732-4743
        • Day M.
        • Wang Z.
        • Ding J.
        • An X.
        • Ingham C.A.
        • Shering A.F.
        • et al.
        Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models.
        Nat Neurosci. 2006; 9: 251-259
        • Scholz B.
        • Svensson M.
        • Alm H.
        • Skold K.
        • Falth M.
        • Kultima K.
        • et al.
        Striatal proteomic analysis suggests that first L-dopa dose equates to chronic exposure.
        PloS One. 2008; 3: e1589
        • Villalba R.M.
        • Lee H.
        • Smith Y.
        Dopaminergic denervation and spine loss in the striatum of MPTP-treated monkeys.
        Exp Neurol. 2009; 215: 220-227
        • Corvol J.C.
        • Muriel M.P.
        • Valjent E.
        • Feger J.
        • Hanoun N.
        • Girault J.A.
        • et al.
        Persistent increase in olfactory type G-protein alpha subunit levels may underlie D1 receptor functional hypersensitivity in Parkinson’s disease.
        J Neurosci. 2004; 24: 7007-7014
        • Taylor J.L.
        • Bishop C.
        • Walker P.D.
        Dopamine D1 and D2 receptor contributions to L-DOPA-induced dyskinesia in the dopamine-depleted rat.
        Pharmacol Biochem Behav. 2005; 81: 887-893
        • Aubert I.
        • Guigoni C.
        • Håkansson K.
        • Li Q.
        • Dovero S.
        • Barthe N.
        • et al.
        Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia.
        Ann Neurol. 2005; 57: 17-26
        • Westin J.E.
        • Vercammen L.
        • Strome E.M.
        • Konradi C.
        • Cenci M.A.
        Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of L-DOPA-induced dyskinesia and the role of dopamine D1 receptors.
        Biol Psychiatry. 2007; 62: 800-810
        • Delfino M.
        • Kalisch R.
        • Czisch M.
        • Larramendy C.
        • Ricatti J.
        • Taravini I.R.
        • et al.
        Mapping the effects of three dopamine agonists with different dyskinetogenic potential and receptor selectivity using pharmacological functional magnetic resonance imaging.
        Neuropsychopharmacol. 2007; 32: 1911-1921
        • Darmopil S.
        • Martin A.B.
        • De Diego I.R.
        • Ares S.
        • Moratalla R.
        Genetic inactivation of dopamine D1 but not D2 receptors inhibits L-DOPA-induced dyskinesia and histone activation.
        Biol Psychiatry. 2009; 66: 603-613
        • Feyder M.
        • Bonito-Oliva A.
        • Fisone G.
        L-dopa-induced dyskinesia and abnormal signaling in striatal medium spiny neurons: Focus on dopamine D1 receptor-mediated transmission.
        Front Behav Neurosci. 2011; 5 (doi:10.3389/fnbeh.2011.00071): 71
        • Fasano S.
        • D’Antoni A.
        • Orban P.C.
        • Valjent E.
        • Putignano E.
        • Vara H.
        • et al.
        Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) controls activation of extracellular signal-regulated kinase (ERK) signaling in the striatum and long-term behavioral responses to cocaine.
        Biol Psychiatry. 2009; 66: 758-768
        • Murer M.G.
        • Moratalla R.
        Striatal signaling in L-dopa-induced dyskinesia: Common mechanisms with drug abuse and long term memory involving D1 dopamine receptor stimulation.
        Front Neuroanat. 2011; 5 (doi:10.3389/fnana.2011.00051): 51
        • Robinson T.E.
        • Kolb B.
        Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine.
        J Neurosci. 1997; 17: 8491-8497
        • Robinson T.E.
        • Gorny G.
        • Mitton E.
        • Kolb B.
        Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex.
        Synapse. 2001; 39: 257-266
        • Norrholm S.D.
        • Bibb J.A.
        • Nestler E.J.
        • Ouimet C.C.
        • Taylor J.R.
        • Greengard P.
        Cocaine-induced proliferation of dendritic spines in nucleus accumbens is dependent on the activity of cyclin-dependent kinase-5.
        Neurosci. 2003; 116: 19-22
        • Ferrario C.R.
        • Gorny G.
        • Crombag H.S.
        • Li Y.
        • Kolb B.
        • Robinson T.E.
        Neural and behavioral plasticity associated with the transition from controlled to escalated cocaine use.
        Biol Psychiatry. 2005; 58: 751-759
        • Agatsuma S.
        • Dang M.T.
        • Li Y.
        • Hiroi N.
        N-methyl-D-aspartic acid receptors on striatal neurons are essential for cocaine cue reactivity in mice.
        Biol Psychiatry. 2010; 67: 778-780
        • Dumitriu D.
        • Laplant Q.
        • Grossman Y.S.
        • Dias C.
        • Janssen W.G.
        • Russo S.J.
        • et al.
        Subregional, dendritic compartment, and spine subtype specificity in cocaine regulation of dendritic spines in the nucleus accumbens.
        J Neurosci. 2012; 32: 6957-6966
        • Pavon N.
        • Martin A.B.
        • Mendialdua A.
        • Moratalla R.
        ERK phosphorylation and FosB expression are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice.
        Biol Psychiatry. 2006; 59: 64-74
        • Granado N.
        • Ortiz O.
        • Suarez L.M.
        • Martin E.D.
        • Cena V.
        • Solis J.M.
        • Moratalla R.
        D1 but not D5 dopamine receptors are critical for LTP, spatial learning, and LTP-Induced arc and zif268 expression in the hippocampus.
        Cereb Cortex. 2008; 18: 1-12
        • Elston G.N.
        • Benavides-Piccione R.
        • DeFelipe J.
        The pyramidal cell in cognition: A comparative study in human and monkey.
        J Neurosci. 2001; 21: RC163
        • Kawaguchi Y.
        Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum.
        J Neurosci. 1993; 13: 4908-4923
        • Santini E.
        • Valjent E.
        • Usiello A.
        • Carta M.
        • Borgkvist A.
        • Girault J.A.
        • et al.
        Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia.
        J Neurosci. 2007; 27: 6995-7005
        • Santini E.
        • Alcacer C.
        • Cacciatore S.
        • Heiman M.
        • Hervé D.
        • Greengard P.
        • et al.
        L-DOPA activates ERK signaling and phosphorylates histone H3 in the striatonigral médium spiny neurons of hemiparkinsonian mice.
        J Neurochem. 2009; 108: 621-633
        • Calabresi P.
        • Mercuri N.B.
        • Sancesario G.
        • Bernardi G.
        Electrophysiology of dopamine-denervated striatal neurons. Implications for Parkinson’s disease.
        Brain. 1993; 116: 433-452
        • Calabresi P.
        • Centonze D.
        • Bernardi G.
        Electrophysiology of dopamine in normal and denervated striatal neurons.
        Trends Neurosci. 2000; 23: S57-S63
        • Azdad K.
        • Chavez M.
        • Don Bischop P.
        • Wetzelaer P.
        • Marescau B.
        • De Deyn P.P.
        • et al.
        Homeostatic plasticity of striatal neurons intrinsic excitability following dopamine depletion.
        PloS One. 2009; 4: e6908
        • Albin R.L.
        • Young A.B.
        • Penney J.B.
        The functional anatomy of basal ganglia disorders.
        Trends Neurosci. 1989; 12: 366-375
        • Jenner P.
        Molecular mechanisms of L-DOPA-induced dyskinesia.
        Nat Neurosci. 2008; 9: 665-677
        • Day M.
        • Wokosin D.
        • Plotkin J.L.
        • Tian X.
        • Surmeier D.J.
        Differential excitability and modulation of striatal médium spiny neurons dendrites.
        J Neurosci. 2008; 28: 11603-11614
        • Cepeda C.
        • André V.M.
        • Yamazaki I.
        • Wu N.
        • Kleiman-Weiner M.
        • Levine M.S.
        Differential electrophysiological properties of dopamine D1 and D2 receptors-containing striatal medium-sized spiny neurons.
        Eur J Neurosci. 2008; 27: 671-682
        • Meshul C.K.
        • Emre N.
        • Nakamura C.M.
        • Allen C.
        • Donohue M.K.
        • Buckman J.F.
        Time-dependent changes in striatal glutamate synapses following a 6-hydroxydopamine lesion.
        Neurosci. 1999; 88: 1-16
        • Dupre K.B.
        • Ostock C.Y.
        • Eskow Jaunarajs K.L.
        • Button T.
        • Savage L.M.
        • Wolf W.
        • Bishop C.
        Local modulation of striatal glutamate efflux by serotonin 1A receptor stimulation in dyskinetic, hemiparkinsonian rats.
        Exp Neurol. 2011; 229: 288-299
        • Doig N.M.
        • Moss J.
        • Bolam J.P.
        Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum.
        J Neurosci. 2010; 30: 14610-14618
        • Ballion B.
        • Frenois F.
        • Zold C.L.
        • Chetrit J.
        • Murer M.G.
        • Gonon F.
        D2 receptor stimulation, but not D1, restores striatal equilibrium in a rat model of Parkinsonism.
        Neurobiol Dis. 2009; 35: 376-384
        • André V.M.
        • Cepeda C.
        • Cummings D.M.
        • Jocoy E.L.
        • Fisher Y.E.
        • William Yang X.
        • Levine M.S.
        Dopamine modulation of excitatory currents in the striatum is dictated by the expression of D1 or D2 receptors and modified by endocannabinoids.
        Eur J Neurosci. 2010; 31: 14-28
        • Gardoni F.
        • Picconi B.
        • Ghiglieri V.
        • Polli F.
        • Bagetta V.
        • Bernardi G.
        • et al.
        A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia.
        J Neurosci. 2006; 26: 2914-2922
        • Hallett P.J.
        • Spoelgen R.
        • Hyman B.T.
        • Standaert D.G.
        • Dunnah A.W.
        Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking.
        J Neurosci. 2006; 26: 4690-4700
        • Porras G.
        • Berthet A.
        • Dehay B.
        • Li Q.
        • Ladepeche L.
        • Normand E.
        • et al.
        PSD-95 expression controls L-DOPA dyskinesia through dopamine D1 receptors trafficking.
        J Clin Invest. 2012; 122: 3977-3989
        • Plotkin J.L.
        • Day M.
        • Surmeier D.J.
        Synaptically driven state transitions in distal dendrites of striatal spiny neurons.
        Nat Neurosci. 2011; 14: 881-888
        • Nisenbaum E.S.
        • Mermelstein P.G.
        • Wilson C.J.
        • Surmeier D.J.
        Selective blockade of a slowly inactivating potassium current in striatal neurons by (+/−) 6-chloro-APB hydrobromide (SKF82958).
        Synapse. 1998; 29: 213-224
        • Jaidar O.
        • Carrillo-Reid L.
        • Hernandez A.
        • Drucker-Colin R.
        • Bargas J.
        • Hernandez-Cruz A.
        Dynamics of the Parkinsonian striatal microcircuit: Entrainment into a dominant network state.
        J Neurosci. 2010; 30: 11326-11336
        • Hernandez-Lopez S.
        • Bargas J.
        • Surmeier D.J.
        • Reyes A.
        • Galarraga E.
        D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance.
        J Neurosci. 1997; 17: 3334-3342
        • Gerfen C.R.
        • Surmeier D.J.
        Modulation of striatal projection systems by dopamine.
        Annu Rev Neurosci. 2011; 34: 441-466
        • Calabresi P.
        • Mercuri N.
        • Stanzione P.
        • Stefani A.
        • Bernardi G.
        Intracellular studies on the dopamine-induced firing inhibition of neostriatal neurons in vitro: Evidence for D1 receptor involvement.
        Neurosci. 1987; 20 (757–571)
        • Boraud T.
        • Bezard E.
        • Bioulac B.
        • Gross C.E.
        Dopamine agonist-induced dyskinesias are correlated to both firing pattern and frequency alterations of pallidal neurones in the MPTP-treated monkey.
        Brain. 2001; 124: 546-557
        • Guigoni C.
        • Dovero S.
        • Aubert I.
        • Li Q.
        • Bioulac B.H.
        • Bloch B.
        • et al.
        Levodopa-induced dyskinesia in MPTP-treated macaques is not dependent on the extent and pattern of nigrostrial lesioning.
        Eur J Neurosci. 2005; 22: 283-287
        • Hirano S.
        • Asanuma K.
        • Ma Y.
        • Tang C.
        • Feigin A.
        • Dhawan V.
        • et al.
        Dissociation of metabolic and neurovascular responses to levodopa in the treatment of Parkinson’s disease.
        J Neurosci. 2008; 28: 4201-4209
        • Halje P.
        • Tamtè M.
        • Richter U.
        • Mohammed M.
        • Cenci M.A.
        • Petersson P.
        Levodopa-induced dyskinesia is strongly associated with resonant cortical oscillations.
        J Neurosci. 2012; 32: 16541-16551