BDgene: A Genetic Database for Bipolar Disorder and Its Overlap With Schizophrenia and Major Depressive Disorder

  • Su-Hua Chang
    Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
    Search for articles by this author
  • Lei Gao
    Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China

    University of Chinese Academy of Sciences, Beijing, China
    Search for articles by this author
  • Zhao Li
    Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China

    University of Chinese Academy of Sciences, Beijing, China
    Search for articles by this author
  • Wei-Na Zhang
    Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China

    University of Chinese Academy of Sciences, Beijing, China
    Search for articles by this author
  • Yang Du
    Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China

    University of Chinese Academy of Sciences, Beijing, China
    Search for articles by this author
  • Jing Wang
    Address correspondence to Jing Wang, Ph.D., Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China
    Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
    Search for articles by this author


      Bipolar disorder (BD) is a common psychiatric disorder with complex genetic architecture. It shares overlapping genetic influences with schizophrenia (SZ) and major depressive disorder (MDD). Large numbers of genetic studies of BD and cross-disorder studies between BD and SZ/MDD have accumulated numerous genetic data. There is a growing need to integrate the data to provide a comprehensive data set to facilitate the genetic study of BD and its highly relevant diseases.


      BDgene database was developed to integrate BD-related genetic factors and shared ones with SZ/MDD from profound literature reading. On the basis of data from the literature, in-depth analyses were performed for further understanding of the data, including gene prioritization, pathway-based analysis, intersection analysis of multidisease candidate genes, and pathway enrichment analysis.


      BDgene includes multiple types of literature-reported genetic factors of BD with both positive and negative results, including 797 genes, 3119 single nucleotide polymorphisms, and 789 regions. Shared genetic factors such as single nucleotide polymorphisms, genes, and regions from published cross-disorder studies among BD and SZ/MDD were also presented. In-depth data analyses identified 43 BD core genes; 70 BD candidate pathways; and 127, 79, and 107 new potential cross-disorder genes for BD-SZ, BD-MDD, and BD-SZ-MDD, respectively.


      As a central genetic database for BD and the first cross-disorder database for BD and SZ/MDD, BDgene provides not only a comprehensive review of current genetic research but also high-confidence candidate genes and pathways for understanding of BD mechanism and shared etiology among its relevant diseases. BDgene is freely available at

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Goodwin F.K.
        • Jamison K.R.
        • Ghaemi S.N.
        Manic-Depressive Illness: Bipolar Disorders and Recurrent Depression.
        2nd ed. Oxford University Press, New York and Oxford2007
        • Merikangas K.R.
        • Akiskal H.S.
        • Angst J.
        • Greenberg P.E.
        • Hirschfeld R.M.
        • Petukhova M.
        • et al.
        Lifetime and 12-month prevalence of bipolar spectrum disorder in the National Comorbidity Survey replication.
        Arch Gen Psychiatry. 2007; 64: 543-552
        • Kessler R.C.
        • McGonagle K.A.
        • Zhao S.
        • Nelson C.B.
        • Hughes M.
        • Eshleman S.
        • et al.
        Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey.
        Arch Gen Psychiatry. 1994; 51: 8-19
        • Novick D.M.
        • Swartz H.A.
        • Frank E.
        Suicide attempts in bipolar I and bipolar II disorder: A review and meta-analysis of the evidence.
        Bipolar Disord. 2010; 12: 1-9
        • Hirschfeld R.M.
        • Vornik L.A.
        Bipolar disorder—costs and comorbidity.
        Am J Manag Care. 2005; 11: S85-S90
        • Barnett J.H.
        • Smoller J.W.
        The genetics of bipolar disorder.
        Neuroscience. 2009; 164: 331-343
        • Huang J.
        • Perlis R.H.
        • Lee P.H.
        • Rush A.J.
        • Fava M.
        • Sachs G.S.
        • et al.
        Cross-disorder genomewide analysis of schizophrenia, bipolar disorder, and depression.
        Am J Psychiatry. 2010; 167: 1254-1263
        • Taylor M.A.
        • Berenbaum S.A.
        • Jampala V.C.
        • Cloninger C.R.
        Are schizophrenia and affective disorder related? Preliminary data from a family study.
        Am J Psychiatry. 150. 1993: 278-285
        • Valles V.
        • Van Os J.
        • Guillamat R.
        • Gutierrez B.
        • Campillo M.
        • Gento P.
        • et al.
        Increased morbid risk for schizophrenia in families of in-patients with bipolar illness.
        Schizophr Res. 2000; 42: 83-90
        • Smoller J.W.
        • Finn C.T.
        Family, twin, and adoption studies of bipolar disorder.
        Am J Med Genet C Semin Med Genet. 2003; 123C: 48-58
        • Serretti A.
        • Mandelli L.
        The genetics of bipolar disorder: Genome “hot regions,” genes, new potential candidates and future directions.
        Mol Psychiatry. 2008; 13: 742-771
        • Offord J.
        Genetic approaches to a better understanding of bipolar disorder.
        Pharmacol Ther. 2012; 133: 133-141
        • Cordeiro Q.
        • Talkowski M.E.
        • Chowdari K.V.
        • Wood J.
        • Nimgaonkar V.
        • Vallada H.
        Association and linkage analysis of RGS4 polymorphisms with schizophrenia and bipolar disorder in Brazil.
        Genes Brain Behav. 2005; 4: 45-50
        • Chowdari K.V.
        • Mirnics K.
        • Semwal P.
        • Wood J.
        • Lawrence E.
        • Bhatia T.
        • et al.
        Association and linkage analyses of RGS4 polymorphisms in schizophrenia.
        Hum Mol Genet. 2002; 11: 1373-1380
        • Li Y.
        • Zhao Q.
        • Zhang Z.
        • Wang P.
        • Che R.
        • Tang W.
        • et al.
        Association study between RGS4 and bipolar disorder in the Chinese Han population.
        Psychiatr Genet. 2010; 20: 130-132
        • Fallin M.D.
        • Lasseter V.K.
        • Avramopoulos D.
        • Nicodemus K.K.
        • Wolyniec P.S.
        • McGrath J.A.
        • et al.
        Bipolar I disorder and schizophrenia: A 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios.
        Am J Hum Genet. 2005; 77: 918-936
        • Prata D.P.
        • Breen G.
        • Munro J.
        • Sinclair M.
        • Osborne S.
        • Li T.
        • et al.
        Bipolar 1 disorder is not associated with the RGS4, PRODH, COMT and GRK3 genes.
        Psychiatr Genet. 2006; 16: 229-230
        • Kato T.
        Molecular genetics of bipolar disorder and depression.
        Psychiatry Clin Neurosci. 2007; 61: 3-19
        • Tranchevent L.-C.
        • Capdevila F.B.
        • Nitsch D.
        • De Moor B.
        • De Causmaecker P.
        • Moreau Y.
        A guide to web tools to prioritize candidate genes.
        Brief Bioinform. 2010; 12: 22-32
        • O’Dushlaine C.
        • Kenny E.
        • Heron E.
        • Donohoe G.
        • Gill M.
        • Morris D.
        • et al.
        Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility.
        Mol Psychiatry. 2011; 16: 286-292
        • Manolio T.A.
        • Brooks L.D.
        • Collins F.S.
        A HapMap harvest of insights into the genetics of common disease.
        J Clin Invest. 2008; 118: 1590-1605
        • Wang K.
        • Li M.
        • Hakonarson H.
        Analysing biological pathways in genome-wide association studies.
        Nat Rev Genet. 2010; 11: 843-854
        • Torkamani A.
        • Topol E.J.
        • Schork N.J.
        Pathway analysis of seven common diseases assessed by genome-wide association.
        Genomics. 2008; 92: 265-272
        • Askland K.
        • Read C.
        • Moore J.
        Pathways-based analyses of whole-genome association study data in bipolar disorder reveal genes mediating ion channel activity and synaptic neurotransmission.
        Hum Genet. 2009; 125: 63-79
        • Chen L.
        • Zhang L.
        • Zhao Y.
        • Xu L.
        • Shang Y.
        • Wang Q.
        • et al.
        Prioritizing risk pathways: A novel association approach to searching for disease pathways fusing SNPs and pathways.
        Bioinformatics. 2009; 25: 237-242
        • Holmans P.
        • Green E.K.
        • Pahwa J.S.
        • Ferreira M.A.
        • Purcell S.M.
        • Sklar P.
        • et al.
        Gene ontology analysis of GWA study data sets provides insights into the biology of bipolar disorder.
        Am J Hum Genet. 2009; 85: 13-24
        • Peng G.
        • Luo L.
        • Siu H.
        • Zhu Y.
        • Hu P.
        • Hong S.
        • et al.
        Gene and pathway-based second-wave analysis of genome-wide association studies.
        Eur J Hum Genet. 2010; 18: 111-117
        • Zhang K.
        • Cui S.
        • Chang S.
        • Zhang L.
        • Wang J.
        i-GSEA4GWAS: A web server for identification of pathways/gene sets associated with traits by applying an improved gene set enrichment analysis to genome-wide association study.
        Nucleic Acids Res. 2010; 38: W90-W95
        • Zhang L.
        • Chang S.
        • Li Z.
        • Zhang K.
        • Du Y.
        • Ott J.
        • et al.
        ADHDgene: A genetic database for attention deficit hyperactivity disorder.
        Nucleic Acids Res. 2012; 40: D1003-D1009
        • Lander E.
        • Kruglyak L.
        Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results.
        Nat Genet. 1995; 11: 241-247
        • Tranchevent L.-C.
        • Barriot R.
        • Yu S.
        • Van Vooren S.
        • Van Loo P.
        • Coessens B.
        • et al.
        Endeavour update: A web resource for gene prioritization in multiple species.
        Nucleic Acids Res. 2008; 36: W377-W384
        • Aerts S.
        • Lambrechts D.
        • Maity S.
        • Van Loo P.
        • Coessens B.
        • De Smet F.
        • et al.
        Gene prioritization through genomic data fusion.
        Nat Biotech. 2006; 24: 537-544
        • Chen Y.
        • Wang W.
        • Zhou Y.
        • Shields R.
        • Chanda S.K.
        • Elston R.C.
        • et al.
        In silico gene prioritization by integrating multiple data sources.
        PLoS One. 2011; 6: e21137
        • Chen J.
        • Bardes E.E.
        • Aronow B.J.
        • Jegga A.G.
        ToppGene Suite for gene list enrichment analysis and candidate gene prioritization.
        Nucleic Acids Res. 2009; 37: W305-W311
        • Chen Y.A.
        • Tripathi L.P.
        • Mizuguchi K.
        TargetMine, an integrated data warehouse for candidate gene prioritisation and target discovery.
        PLoS One. 2011; 6: e17844
        • Chang S.
        • Zhang W.
        • Gao L.
        • Wang J.
        Prioritization of candidate genes for attention deficit hyperactivity disorder by computational analysis of multiple data sources.
        Protein Cell. 2012; 3: 526-534
        • Ferreira M.A.
        • O’Donovan M.C.
        • Meng Y.A.
        • Jones I.R.
        • Ruderfer D.M.
        • Jones L.
        • et al.
        Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder.
        Nat Genet. 2008; 40: 1056-1058
        • Liu Y.
        • Blackwood D.H.
        • Caesar S.
        • de Geus E.J.
        • Farmer A.
        • Ferreira M.A.
        • et al.
        Meta-analysis of genome-wide association data of bipolar disorder and major depressive disorder.
        Mol Psychiatry. 2011; 16: 2-4
      1. Green EK, Hamshere M, Forty L, Gordon-Smith K, Fraser C, Russell E, et al. (2012): Replication of bipolar disorder susceptibility alleles and identification of two novel genome-wide significant associations in a new bipolar disorder case-control sample. Mol Psychiatry.

        • Baum A.E.
        • Akula N.
        • Cabanero M.
        • Cardona I.
        • Corona W.
        • Klemens B.
        • et al.
        A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder.
        Mol Psychiatry. 2008; 13: 197-207
        • Hattori E.
        • Toyota T.
        • Ishitsuka Y.
        • Iwayama Y.
        • Yamada K.
        • Ujike H.
        • et al.
        Preliminary genome-wide association study of bipolar disorder in the Japanese population.
        Am J Med Genet B Neuropsychiatr Genet. 2009; 150B: 1110-1117
        • Smith E.N.
        • Bloss C.S.
        • Badner J.A.
        • Barrett T.
        • Belmonte P.L.
        • Berrettini W.
        • et al.
        Genome-wide association study of bipolar disorder in European American and African American individuals.
        Mol Psychiatry. 2009; 14: 755-763
        • Wellcome Trust Case Control Consortium
        Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.
        Nature. 2007; 447: 661-678
        • Purcell S.
        • Neale B.
        • Todd-Brown K.
        • Thomas L.
        • Ferreira M.A.
        • Bender D.
        • et al.
        PLINK: A tool set for whole-genome association and population-based linkage analyses.
        Am J Hum Genet. 2007; 81: 559-575
        • Liberzon A.
        • Subramanian A.
        • Pinchback R.
        • Thorvaldsdottir H.
        • Tamayo P.
        • Mesirov J.P.
        Molecular signatures database (MSigDB) 3.0.
        Bioinformatics. 2011; 27: 1739-1740
        • Kanehisa M.
        • Goto S.
        • Furumichi M.
        • Tanabe M.
        • Hirakawa M.
        KEGG for representation and analysis of molecular networks involving diseases and drugs.
        Nucleic Acids Res. 2010; 38: D355-D360
        • Flicek P.
        • Amode M.R.
        • Barrell D.
        • Beal K.
        • Brent S.
        • Chen Y.
        • et al.
        Ensembl 2011.
        Nucleic Acids Res. 2011; 39: D800-D806
        • Allen N.C.
        • Bagade S.
        • McQueen M.B.
        • Ioannidis J.P.
        • Kavvoura F.K.
        • Khoury M.J.
        • et al.
        Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: The SzGene database.
        Nat Genet. 2008; 40: 827-834
        • Guo L.
        • Zhang W.
        • Chang S.
        • Zhang L.
        • Ott J.
        • Wang J.
        MK4MDD: A Multi-level knowledge base and analysis platform for major depressive disorder.
        PLoS One. 2012; 7: e46335
        • Altshuler D.M.
        • Gibbs R.A.
        • Peltonen L.
        • Dermitzakis E.
        • Schaffner S.F.
        • Yu F.
        • et al.
        Integrating common and rare genetic variation in diverse human populations.
        Nature. 2010; 467: 52-58
        • Erdmann J.
        • Grosshennig A.
        • Braund P.S.
        • Konig I.R.
        • Hengstenberg C.
        • Hall A.S.
        • et al.
        New susceptibility locus for coronary artery disease on chromosome 3q22.3.
        Nat Genet. 2009; 41: 280-282
        • Ashburner M.
        • Ball C.A.
        • Blake J.A.
        • Botstein D.
        • Butler H.
        • Cherry J.M.
        • et al.
        Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium.
        Nature Genet. 25. 2000: 25-29
        • Keshava Prasad T.S.
        • Goel R.
        • Kandasamy K.
        • Keerthikumar S.
        • Kumar S.
        • Mathivanan S.
        • et al.
        Human Protein Reference Database—2009 update.
        Nucleic Acids Res. 2009; 37: D767-D772
        • Huang da W.
        • Sherman B.T.
        • Lempicki R.A.
        Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.
        Nature Protoc. 2009; 4: 44-57
        • Huang da W.
        • Sherman B.T.
        • Lempicki R.A.
        Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists.
        Nucleic Acids Res. 2009; 37: 1-13
        • Stein L.D.
        • Mungall C.
        • Shu S.
        • Caudy M.
        • Mangone M.
        • Day A.
        • et al.
        The generic genome browser: A building block for a model organism system database.
        Genome Res. 2002; 12: 1599-1610
        • Stein J.L.
        • Hua X.
        • Lee S.
        • Ho A.J.
        • Leow A.D.
        • Toga A.W.
        • et al.
        Voxelwise genome-wide association study (vGWAS).
        Neuroimage. 2010; 53: 1160-1174
        • Taylor W.D.
        • Benjamin S.
        • McQuoid D.R.
        • Payne M.E.
        • Krishnan R.R.
        • MacFall J.R.
        • et al.
        AGTR1 gene variation: association with depression and frontotemporal morphology.
        Psychiatry Res. 2012; 202: 104-109
        • Gratacos M.
        • Costas J.
        • de Cid R.
        • Bayes M.
        • Gonzalez J.R.
        • Baca-Garcia E.
        • et al.
        Identification of new putative susceptibility genes for several psychiatric disorders by association analysis of regulatory and non-synonymous SNPs of 306 genes involved in neurotransmission and neurodevelopment.
        Am J Med Genet B Neuropsychiatr Genet. 2009; 150B: 808-816
        • Pedroso I.
        • Lourdusamy A.
        • Rietschel M.
        • Nothen M.M.
        • Cichon S.
        • McGuffin P.
        • et al.
        Common genetic variants and gene-expression changes associated with bipolar disorder are over-represented in brain signaling pathway genes.
        Biol Psychiatry. 2012; 72: 311-317
        • Padmos R.C.
        • Bekris L.
        • Knijff E.M.
        • Tiemeier H.
        • Kupka R.W.
        • Cohen D.
        • et al.
        A high prevalence of organ-specific autoimmunity in patients with bipolar disorder.
        Biol Psychiatry. 2004; 56: 476-482
        • Drexhage R.C.
        • van der Heul-Nieuwenhuijsen L.
        • Padmos R.C.
        • van Beveren N.
        • Cohen D.
        • Versnel M.A.
        • et al.
        Inflammatory gene expression in monocytes of patients with schizophrenia: Overlap and difference with bipolar disorder. A study in naturalistically treated patients.
        Int J Neuropsychopharmacol. 2010; 13: 1369-1381
        • Munkholm K.
        • Vinberg M.
        • Vedel Kessing L.
        Cytokines in bipolar disorder: A systematic review and meta-analysis.
        J Affect Disord. 2013; 144: 16-27
        • Kempton M.J.
        • Ruberto G.
        • Vassos E.
        • Tatarelli R.
        • Girardi P.
        • Collier D.
        • et al.
        Effects of the CACNA1C risk allele for bipolar disorder on cerebral gray matter volume in healthy individuals.
        Am J Psychiatry. 2009; 166: 1413-1414