Advertisement

Trajectories of Cerebral Cortical Development in Childhood and Adolescence and Adult Attention-Deficit/Hyperactivity Disorder

  • Philip Shaw
    Correspondence
    Address correspondence to Philip Shaw, M.D., Ph.D., National Human Genome Research Institute, Social and Behavioral Research Branch, Section on Neurobehavioral Clinical Research, Building 31, B1 B37, Room 3N 202, Bethesda, MD 20892
    Affiliations
    Section on Neurobehavioral Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, Bethesda, Maryland

    Intramural Program of the National Institute of Mental Health, Bethesda, Maryland
    Search for articles by this author
  • Meaghan Malek
    Affiliations
    Section on Neurobehavioral Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, Bethesda, Maryland
    Search for articles by this author
  • Bethany Watson
    Affiliations
    Section on Neurobehavioral Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, Bethesda, Maryland
    Search for articles by this author
  • Deanna Greenstein
    Affiliations
    Section on Neurobehavioral Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, Bethesda, Maryland
    Search for articles by this author
  • Pietro de Rossi
    Affiliations
    Section on Neurobehavioral Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, Bethesda, Maryland

    Neurosciences, Mental Health and Sensory Functions Department, School of Medicine and Psychology, Sapienza University, Sant’Andrea Hospital, Rome, Italy
    Search for articles by this author
  • Wendy Sharp
    Affiliations
    Intramural Program of the National Institute of Mental Health, Bethesda, Maryland
    Search for articles by this author

      Background

      Childhood attention-deficit/hyperactivity disorder (ADHD) persists into adulthood in around half of those affected, constituting a major public health challenge. No known demographic, clinical, or neuropsychological factors robustly explain the clinical course, directing our focus to the brain. Herein, we link the trajectories of cerebral cortical development during childhood and adolescence with the severity of adult ADHD.

      Methods

      Using a longitudinal study design, 92 participants with ADHD had childhood (mean 10.7 years, SD 3.3) and adult clinical assessments (mean 23.8 years, SD 4.3) with repeated neuroanatomic magnetic resonance imaging. Contrast was made against 184 matched typically developing volunteers.

      Results

      Attention-deficit/hyperactivity disorder persisted in 37 (40%) subjects and adult symptom severity was linked to cortical trajectories. Specifically, as the number of adult symptoms increased, particularly inattentive symptoms, so did the rate of cortical thinning in the medial and dorsolateral prefrontal cortex. For each increase of one symptom of adult ADHD, the rate of cortical thinning increased by .0018 mm (SE = .0004, t = 4.2, p < .0001), representing a 5.6% change over the mean rate of thinning for the entire group. These differing trajectories resulted in a convergence toward typical dimensions among those who remitted and a fixed, nonprogressive deficit in persistent ADHD. Notably, cortical thickening or minimal thinning (greater than −.007 mm/year) was found exclusively among individuals who remitted.

      Conclusions

      Adult ADHD status is linked with the developmental trajectories of cortical components of networks supporting attention, cognitive control, and the default mode network. This informs our understanding of the developmental pathways to adult ADHD.

      Key Words

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Halperin J.M.
        • Trampush J.W.
        • Miller C.J.
        • Marks D.J.
        • Newcorn J.H.
        Neuropsychological outcome in adolescents/young adults with childhood ADHD: Profiles of persisters, remitters and controls.
        J Child Psychol Psychiatry. 2008; 49: 958-966
        • Lara C.
        • Fayyad J.
        • de Graaf R.
        • Kessler R.C.
        • Aguilar-Gaxiola S.
        • Angermeyer M.
        • et al.
        Childhood predictors of adult attention-deficit/hyperactivity disorder: Results from the World Health Organization World Mental Health Survey Initiative.
        Biol Psychiatry. 2009; 65: 46-54
        • Faraone S.V.
        • Biederman J.
        • Mick E.
        The age-dependent decline of attention deficit hyperactivity disorder: A meta-analysis of follow-up studies.
        Psychol Med. 2006; 36: 159-165
        • Martel M.M.
        • von Eye A.
        • Nigg J.
        Developmental differences in structure of attention-deficit/hyperactivity disorder (ADHD) between childhood and adulthood.
        Int J Behav Dev. 2012; 36: 279-292
        • Polderman T.J.C.
        • Boomsma D.I.
        • Bartels M.
        • Verhulst F.C.
        • Huizink A.C.
        A systematic review of prospective studies on attention problems and academic achievement.
        Acta Psychiatr Scand. 2010; 122: 271-284
        • Pingault J.B.
        Childhood trajectories of inattention and hyperactivity and prediction of educational attainment in early adulthood: A 16-year longitudinal population-based study.
        Am J Psychiatry. 2011; 168: 1164
        • Simon V.
        • Czobor P.
        • Balint S.
        • Meszaros A.
        • Bitter I.
        Prevalence and correlates of adult attention-deficit hyperactivity disorder: Meta-analysis.
        Br J Psychiatry. 2009; 194: 204-211
        • Vetter V.L.
        • Elia J.
        • Erickson C.
        • Berger S.
        • Blum N.
        • Uzark K.
        • et al.
        Cardiovascular monitoring of children and adolescents with heart disease receiving medications for attention deficit/hyperactivity disorder.
        Circulation. 2008; 117: 2407-2423
        • Bernfort L.
        • Nordfeldt S.
        • Persson J.
        ADHD from a socio-economic perspective.
        Acta Pædiatr. 2008; 97: 239-245
        • Birnbaum H.G.
        • Kessler R.C.
        • Lowe S.W.
        • Secnik K.
        • Greenberg P.E.
        • Leong S.A.
        • Swensen A.R.
        Costs of attention deficit-hyperactivity disorder (ADHD) in the US: Excess costs of persons with ADHD and their family members in 2000.
        Curr Med Res Opin. 2005; 21: 195-205
        • Bussing R.
        • Mason D.M.
        • Bell L.
        • Porter P.
        • Garvan C.
        Adolescent outcomes of childhood attention-deficit/hyperactivity disorder in a diverse community sample.
        J Am Acad Child Adolesc Psychiatry. 2010; 49: 595-605
        • Bauermeister J.J.
        • Bird H.R.
        • Shrout P.E.
        • Chavez L.
        • Ramirez R.
        • Canino G.
        Short-term persistence of DSM-IV ADHD diagnoses: Influence of context, age, and gender.
        J Am Acad Child Adolesc Psychiatry. 2011; 50: 554-562
        • Biederman J.
        • Faraone S.
        • Milberger S.
        • Guite J.
        • Mick E.
        • Chen L.
        • et al.
        A prospective 4-year follow-up study of attention-deficit hyperactivity and related disorders.
        Arch Gen Psychiatry. 1996; 53: 437-446
        • Lahey B.B.
        • Pelham W.E.
        • Loney J.
        • Kipp H.
        • Ehrhardt A.
        • Lee S.S.
        • et al.
        Three-year predictive validity of DSM-IV attention deficit hyperactivity disorder in children diagnosed at 4-6 years of age.
        Am J Psychiatry. 2004; 161: 2014-2020
        • Monuteaux M.C.
        • Mick E.
        • Faraone S.V.
        • Biederman J.
        The influence of sex on the course and psychiatric correlates of ADHD from childhood to adolescence: A longitudinal study.
        J Child Psychol Psychiatry. 2010; 51: 233-241
        • Biederman J.
        • Petty C.R.
        • Dolan C.
        • Hughes S.
        • Mick E.
        • Monuteaux M.C.
        • Faraone S.V.
        The long-term longitudinal course of oppositional defiant disorder and conduct disorder in ADHD boys: Findings from a controlled 10-year prospective longitudinal follow-up study.
        Psychol Med. 2008; 38: 1027-1036
        • Makris N.
        • Biederman J.
        • Valera E.M.
        • Bush G.
        • Kaiser J.
        • Kennedy D.N.
        • et al.
        Cortical thinning of the attention and executive function networks in adults with attention-deficit/hyperactivity disorder.
        Cereb Cortex. 2007; 17: 1364-1375
        • Proal E.
        • Reiss P.T.
        • Klein R.G.
        • Mannuzza S.
        • Gotimer K.
        • Ramos-Olazagasti M.A.
        • et al.
        Brain gray matter deficits at 33-year follow-up in adults with attention-deficit/hyperactivity disorder established in childhood.
        Arch Gen Psychiatry. 2011; 68: 1122-1134
        • Amico F.
        • Stauber J.
        • Koutsouleris N.
        • Frodl T.
        Anterior cingulate cortex gray matter abnormalities in adults with attention deficit hyperactivity disorder: A voxel-based morphometry study.
        Psychiatry Res. 2011; 191: 31-35
        • Seidman L.J.
        • Valera E.M.
        • Makris N.
        • Monuteaux M.C.
        • Boriel D.L.
        • Kelkar K.
        • et al.
        Dorsolateral prefrontal and anterior cingulate cortex volumetric abnormalities in adults with attention-deficit/hyperactivity disorder identified by magnetic resonance imaging.
        Biol Psychiatry. 2006; 60: 1071-1080
        • Shaw P.
        • Gogtay N.
        • Rapoport J.
        Childhood psychiatric disorders as anomalies in neurodevelopmental trajectories.
        Hum Brain Mapp. 2010; 31: 917-925
        • Shaw P.
        • Lerch J.
        • Greenstein D.
        • Sharp W.
        • Clasen L.
        • Evans A.
        • et al.
        Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder.
        Arch Gen Psychiatry. 2006; 63: 540-549
        • Reich W.
        Diagnostic interview for children and adolescents (DICA).
        J Am Acad Child Adolesc Psychiatry. 2000; 39: 59-66
        • Hollingshead A.
        Four Factor Index of Social Status.
        Yale University Department of Sociology, New Haven, CT1975
        • DuPaul G.J.
        • Power J.D.
        • Anastopouls A.A.
        • Reid R.
        ADHD Rating Scale-IV: Checklists, Norms and Clinical Interpretation.
        The Guilford Press, New York1998
        • Kim-Cohen J.
        • Caspi A.
        • Taylor A.
        • Williams B.
        • Newcombe R.
        • Craig I.W.
        • Moffitt T.E.
        MAOA, maltreatment, and gene-environment interaction predicting children's mental health: New evidence and a meta-analysis.
        Mol Psychiatry. 2006; 11: 903-913
        • Smith S.M.
        Fast robust automated brain extraction.
        Hum Brain Mapp. 2002; 17: 143-155
        • Collins D.L.
        • Neelin P.
        • Peters T.M.
        • Evans A.C.
        Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space.
        J Comput Assist Tomogr. 1994; 18: 192-205
        • Sled J.G.
        • Zijdenbos A.P.
        • Evans A.C.
        A nonparametric method for automatic correction of intensity nonuniformity in MRI data.
        IEEE Trans Med Imaging. 1998; 17: 87-97
        • Zijdenbos A.P.
        • Forghani R.
        • Evans A.C.
        Automatic "pipeline" analysis of 3-D MRI data for clinical trials: Application to multiple sclerosis.
        IEEE Trans Med Imaging. 2002; 21: 1280-1291
        • Tohka J.
        • Zijdenbos A.
        • Evans A.
        Fast and robust parameter estimation for statistical partial volume models in brain MRI.
        Neuroimage. 2004; 23: 84-97
        • Kim J.S.
        • Singh V.
        • Lee J.K.
        • Lerch J.
        • Ad-Dab'bagh Y.
        • MacDonald D.
        • et al.
        Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification.
        Neuroimage. 2005; 27: 210-221
        • Lerch J.P.
        • Evans A.C.
        Cortical thickness analysis examined through power analysis and a population simulation.
        Neuroimage. 2005; 24: 163-173
        • Lyttelton O.
        • Boucher M.
        • Robbins S.
        • Evans A.
        An unbiased iterative group registration template for cortical surface analysis.
        Neuroimage. 2007; 34: 1535-1544
      1. American Psychological Association (2012): DSM-5 development: ADHD. Arlington, VA: American Psychiatric Association

        • Pinheiro J.C.
        • Bates D.M.
        Mixed-Effects Models in S and S-PLUS.
        Springer, New York2000
        • Tamnes C.K.
        • Ostby Y.
        • Fjell A.M.
        • Westlye L.T.
        • Due-Tonnessen P.
        • Walhovd K.B.
        Brain maturation in adolescence and young adulthood: Regional age-related changes in cortical thickness and white matter volume and microstructure.
        Cereb Cortex. 2010; 20: 534-548
        • Sowell E.R.
        • Thompson P.M.
        • Leonard C.M.
        • Welcome S.E.
        • Kan E.
        • Toga A.W.
        Longitudinal mapping of cortical thickness and brain growth in normal children.
        J Neurosci. 2004; 24: 8223-8231
        • O'Donnell S.
        • Noseworthy M.D.
        • Levine B.
        • Dennis M.
        Cortical thickness of the frontopolar area in typically developing children and adolescents.
        Neuroimage. 2005; 24: 948-954
        • Raznahan A.
        • Lerch J.P.
        • Lee N.
        • Greenstein D.
        • Wallace G.L.
        • Stockman M.
        • et al.
        Patterns of coordinated anatomical change in human cortical development: A longitudinal neuroimaging study of maturational coupling.
        Neuron. 2011; 72: 873-884
        • Genovese C.R.
        • Lazar N.A.
        • Nichols T.
        Thresholding of statistical maps in functional neuroimaging using the false discovery rate.
        Neuroimage. 2002; 15: 870-878
        • Petersen S.E.
        • Posner M.I.
        The attention system of the human brain: 20 years after.
        Annu Rev Neurosci. 2012; 35: 73-89
        • Posner M.I.
        • DiGirolamo G.J.
        Executive attention: Conflict, target detection and cognitive control.
        in: Parasuraman R. The Attentive Brain. MIT press, Cambridge, MA1998
        • Bush G.
        Cingulate, frontal, and parietal cortical dysfunction in attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2011; 69: 1160-1167
        • Rubia K.
        Cool inferior frontostriatal dysfunction in attention-deficit/hyperactivity disorder versus hot ventromedial orbitofrontal-limbic dysfunction in conduct disorder: A review.
        Biol Psychiatry. 2011; 69: e69-e87
        • Makris N.
        • Buka S.L.
        • Biederman J.
        • Papadimitriou G.M.
        • Hodge S.M.
        • Valera E.M.
        • et al.
        Attention and executive systems abnormalities in adults with childhood ADHD: A DT-MRI study of connections.
        Cereb Cortex. 2008; 18: 1210-1220
        • Raichle M.E.
        • Snyder A.Z.
        A default mode of brain function: A brief history of an evolving idea.
        Neuroimage. 2007; 37: 1083-1090
        • Buckner R.L.
        • Andrews-Hanna J.R.
        • Schacter D.L.
        The brain's default network.
        Ann N Y Acad Sci. 2008; 1124: 1-38
        • Tian L.
        • Jiang T.
        • Liang M.
        • Zang Y.
        • He Y.
        • Sui M.
        • Wang Y.
        Enhanced resting-state brain activities in ADHD patients: A fMRI study.
        Brain Dev. 2008; 30: 342-348
        • Uddin L.Q.
        • Kelly A.M.C.
        • Biswal B.B.
        • Margulies D.S.
        • Shehzad Z.
        • Shaw D.
        • et al.
        Network homogeneity reveals decreased integrity of default-mode network in ADHD.
        J Neurosci Methods. 2008; 169: 249-254
        • Sonuga-Barke E.J.S.
        • Castellanos F.X.
        Spontaneous attentional fluctuations in impaired states and pathological conditions: A neurobiological hypothesis.
        Neurosci Biobehav Rev. 2007; 31: 977-986
        • Halperin J.M.
        • Schulz K.P.
        Revisiting the role of the prefrontal cortex in the pathophysiology of attention-deficit/hyperactivity disorder.
        Psychol Bull. 2006; 132: 560-581
        • Jovicich J.
        • Czanner S.
        • Han X.
        • Salat D.
        • van der Kouwe A.
        • Quinn B.
        • et al.
        MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths.
        Neuroimage. 2009; 46: 177-192
        • Goodman R.
        • Simonoff E.
        • Stevenson J.
        The impact of child IQ, parent IQ and sibling IQ on child behavioural deviance scores.
        J Child Psychol Psychiatry. 1995; 36: 409-425
        • Mariani M.A.
        • Barkley R.A.
        Neuropsychological and academic functioning in preschool boys with attention deficit hyperactivity disorder.
        Dev Neuropsychol. 1997; 13: 111-129
        • Kuntsi J.
        • Eley T.C.
        • Taylor A.
        • Hughes C.
        • Asherson P.
        • Caspi A.
        • Moffitt T.E.
        Co-occurrence of ADHD and low IQ has genetic origins.
        Am J Med Genet B Neuropsychiatr Genet. 2004; 124: 41-47
        • de Zeeuw P.
        • Schnack H.G.
        • van Belle J.
        • Weusten J.
        • van Dijk S.
        • Langen M.
        • et al.
        Differential brain development with low and high IQ in attention-deficit/hyperactivity disorder.
        PLoS One. 2012; 7: e35770