Advertisement

Changes in the Cholinergic System between Bipolar Depression and Euthymia as Measured with [123I]5IA Single Photon Emission Computed Tomography

      Background

      The cholinergic system is substantially altered in individuals with major depression and is partially restored when depression remits. We quantified the availability of β2-subunit-containing nicotinic acetylcholine receptors (β2*-nAChR) in subjects with bipolar disorder.

      Methods

      Twenty-five subjects with bipolar disorder (15 depressed, 10 euthymic) and 25 sex- and age-matched control subjects had a [123I]5IA-85380 single photon emission computed tomography scan to quantify β2*-nAChR VT/fP (total volume of distribution, corrected for individual differences in metabolism and protein binding of the radiotracer). Average VT/fP was compared between groups and correlated with clinical characteristics. Postmortem analysis of β2*-nAChRs was conducted using equilibrium binding with [125I]5IA in subjects with bipolar disorder and matched control subjects.

      Results

      We showed significantly lower β2*-nAChR availability (20%–38%) in subjects with bipolar depression compared with euthymic and control subjects across all brain regions assessed (frontal, parietal, temporal, and anterior cingulate cortex, hippocampus, amygdala, thalamus, striatum). The postmortem binding study in which endogenous acetylcholine was washed out did not show a statistically significant difference in β2*-nAChR number in temporal cortex of the bipolar depressed and control groups (15% difference; p = .2).

      Conclusions

      We show that the alteration in the cholinergic system observed during a depressive episode appears to resolve during euthymia. We suggest that lower VT/fP observed in vivo may be due to a combination of higher endogenous acetylcholine levels during depression, which could compete with radiotracer binding to the receptor in vivo, and lower receptor number in bipolar depression. Identification of differences in cholinergic signaling in subjects with bipolar depression may improve our understanding of its etiology and reveal new treatment targets.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Murray C.J.
        • Lopez A.D.
        Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study.
        Lancet. 1997; 349: 1436-1442
        • Judd L.L.
        • Akiskal H.S.
        • Schettler P.J.
        • Endicott J.
        • Maser J.
        • Solomon D.A.
        • et al.
        The long-term natural history of the weekly symptomatic status of bipolar I disorder.
        Arch Gen Psychiatry. 2002; 59: 530-537
        • Cipriani A.
        • Barbui C.
        • Salanti G.
        • Rendell J.
        • Brown R.
        • Stockton S.
        • et al.
        Comparative efficacy and acceptability of antimanic drugs in acute mania: A multiple-treatments meta-analysis.
        Lancet. 2011; 378: 1306-1315
        • Frye M.A.
        • Ha K.
        • Kanba S.
        • Kato T.
        • Ozerdem A.
        • Vazquez G.
        • et al.
        International consensus group on depression prevention in bipolar disorder.
        J Clin Psychiatry. 2011; 72: 1295-1310
        • Vieta E.
        • Locklear J.
        • Gunther O.
        • Ekman M.
        • Miltenburger C.
        • Chatterton M.L.
        • et al.
        Treatment options for bipolar depression: A systematic review of randomized, controlled trials.
        J Clin Psychopharmacol. 2010; 30: 579-590
        • Sidor M.M.
        • Macqueen G.M.
        Antidepressants for the acute treatment of bipolar depression: A systematic review and meta-analysis.
        J Clin Psychiatry. 2011; 72: 156-167
        • Mineur Y.S.
        • Picciotto M.R.
        Nicotine receptors and depression: Revisiting and revising the cholinergic hypothesis.
        Trends Pharmacol Sci. 2010; 31: 580-586
        • Philip N.S.
        • Carpenter L.L.
        • Tyrka A.R.
        • Price L.H.
        Nicotinic acetylcholine receptors and depression: A review of the preclinical and clinical literature.
        Psychopharmacology (Berl). 2010; 212: 1-12
        • Dilsaver S.
        Pathophysiology of “cholinoceptor supersensitivity” in affective disorders.
        Biol Psychiatry. 1986; 21: 813-829
        • Owens M.
        • Overstreet D.
        • Knight D.
        • Rezvani A.
        • Ritchie J.
        • Bissette G.
        • et al.
        Alterations in the hypothalamic-pituitary-adrenal axis in a proposed animal model of depression with genetic muscarinic supersensitivity.
        Neuropsychopharmacology. 1991; 4: 87-93
        • Saricicek A.
        • Esterlis I.
        • Maloney K.H.
        • Mineur Y.S.
        • Ruf B.M.
        • Muralidharan A.
        • et al.
        Persistent beta2*-nicotinic acetylcholinergic receptor dysfunction in major depressive disorder.
        Am J Psychiatry. 2012; 169: 851-859
        • Overstreet D.
        The Flinders sensitive line rats: A genetic animal model of depression.
        Neurosci Biobehav Rev. 1993; 17: 51-68
        • Janowsky D.
        • el-Yousef M.
        • Davis J.
        • Sekerke H.
        A cholinergic-adrenergic hypothesis of mania and depression.
        Lancet. 1972; 2: 632-635
        • Janowsky D.S.
        • el-Yousef M.K.
        • Davis J.M.
        Acetylcholine and depression.
        Psychosom Med. 1974; 36: 248-257
        • Szymusiak R.
        Magnocellular nuclei of the basal forebrain: Substrates of sleep and arousal regulation.
        Sleep. 1995; 18: 478-500
        • Murray C.
        • Fibiger H.
        Learning and memory deficits after lesions of the nucleus basalis magnocellularis: Reversal by physostigmine.
        Neuroscience. 1985; 14: 1025-1032
        • Wesnes K.
        • Warburton D.
        Effects of smoking on rapid information processing performance.
        Neuropsychobiology. 1983; 9: 223-229
        • Picciotto M.
        • Zoli M.
        • Rimondin R.
        • Lena C.
        • Marubio L.
        • Pich E.
        • et al.
        Acetycholine receptors containing the b2 subunit are involved in the reinforcing properties of nicotine.
        Nature. 1998; 391: 173-177
        • Picciotto M.
        • MZ M.
        • Zachariou V.
        • Changeux J.
        Contribution of nicotinic acetylcholine receptors containing the beta 2-subunit to the behavioural effects of nicotine.
        Biochem Soc Trans. 1997; 25: 824-829
        • D’Souza D.
        • Esterlis I.
        • Carbuto M.
        • Krasenics M.
        • Seibyl J.
        • Bois F.
        • et al.
        Lower β2*-nicotinic acetylcholine receptor availability in smokers with schizophrenia.
        Am J Psychiatry. 2012; 169: 326-334
        • Esterlis I.
        • Cosgrove K.
        • Petrakis I.
        • McKee S.
        • Bois F.
        • Krantzler E.
        • et al.
        SPECT imaging of nicotinic acetylcholine receptors in non-smoking heavy alcohol drinking individuals.
        Drug Alcohol Depend. 2010; 108: 146-150
        • Esterlis I.
        • Mitsis E.
        • Batis J.
        • Bois F.
        • Picciotto M.
        • Stiklus S.
        • et al.
        Brain β2*-nicotinic acetylcholine receptor occupancy after use of a nicotine inhaler.
        Int J Neuropsychopharmacology. 2011; 14: 389-398
        • Esterlis I.
        • Cosgrove K.
        • Batis J.
        • Bois F.
        • Stiklus S.
        • Perkins E.
        • et al.
        Quantification of smoking induced occupancy of β2-nicotinic acetylcholine receptors: Estimation of nondisplaceable binding.
        J Nucl Med. 2010; 51: 1226-1233
        • First M.B.
        • Spitzer R.L.
        • Gibbon M.
        • Williams J.B.W.
        Structured Clinical Interview for DSM-IV Axis I disorders—Clinician Version (SCID-CV).
        American Psychiatric Press, Washington, DC1997
        • Staley J.
        • Krishnan-Sarin S.
        • Cosgrove K.
        • Krantzler E.
        • Frohlich E.
        • Perry E.
        • et al.
        Human tobacco smokers in early abstinence have higher levels of beta2-nicotinic acetylcholine receptors than nonsmokers.
        J Neurosci. 2006; 26: 8707-8714
        • Cosgrove K.
        • Esterlis I.
        • McKee S.
        • Bois F.
        • Seibyl J.
        • Krishnan-Sarin C.M.S.
        • et al.
        Sex differences in availability of β2*-nicotinic acetylcholine receptors in recently abstinent tobacco smokers.
        Arch Gen Psychiatry. 2012; 69: 418-427
        • Staley J.
        • Cv D.y.c.k.
        • Weinzimmer D.
        • Brenner E.
        • Baldwin R.
        • Tamagnan G.
        • et al.
        Iodine-123-5-IA-85380 SPECT measurement of nicotinic acetylcholine receptors in human brain by the constant infusion paradigm: Feasibility and reproducibility.
        J Nucl Med. 2005; 46: 1466-1472
        • Saricicek A.
        • Esterlis I.
        • Maloney K.
        • Mineur Y.
        • Ruf B.
        • Muralidharan A.
        • et al.
        Persistent β2*-nicotinic acetylcholinergic receptor dysfunction in major depressive disorder.
        Am J Psychiatry. 2012; 169: 851-859
        • Staley J.K.
        • Krishnan-Sarin S.
        • Cosgrove K.P.
        • Krantzler E.
        • Frohlich E.
        • Perry E.
        • et al.
        Human tobacco smokers in early abstinence have higher levels of beta2* nicotinic acetylcholine receptors than nonsmokers.
        J Neurosci. 2006; 26: 8707-8714
        • Breese C.
        • Marks M.
        • Logel J.
        • Adams C.
        • Sullivan B.
        • Collins A.
        • et al.
        Effect of smoking history on [3H]nicotine binding in human postmortem brain.
        J Pharmacol Exp Therap. 1997; 282: 7-13
        • Whiteaker P.
        • Sharples C.
        • Wonnacott S.
        Agonist-induced upregulation of alpha4beta2 nicotinic acetylcholine receptors in M10 cells: Pharmacological and spatial definition.
        Mol Pharm. 1998; 53: 950-962
        • Fujita M.
        • Al-Tikriti M.
        • Tamagnan G.
        • Zoghbi S.
        • Bozkurt A.
        • Baldwin R.
        • et al.
        Influence of acetylcholine levels on the binding of a SPECT nicotinic acetylcholine receptor ligand [123I]5-I-A-85380.
        Synapse. 2003; 48: 116-122
        • Esterlis I.
        • Hannestad J.
        • Bois F.
        • Sewell R.
        • Tyndale R.
        • Seibyl J.
        • et al.
        Imaging changes in synaptic acetylcholine availability in living human subjects.
        J Nucl Med. 2013; 54: 78-82
        • Mesulam M.
        Cholinergic aspects of aging and Alzheimer’s disease.
        Biol Psychiatry. 2012; 71: 760-761
        • Mineur Y.
        • Einstein E.
        • Seymour P.
        • Coe J.
        • O’Neill B.
        • Rollema H.
        • et al.
        α4β2 nicotinic acetylcholine receptor partial agonists with low intrinsic efficacy have antidepressant-like properties.
        Behav Pharmacol. 2011; 22: 291-299
        • George T.
        • Sacco K.
        • Vessicchio J.
        • Weinberger A.
        • Shytle R.D.
        Nicotinic antagonist augmentation of selective serotonin reuptake inhibitor-refractory major depressive disorder: A preliminary study.
        J Clin Psychopharmacol. 2008; 28: 340-344
        • Rollema H.
        • Shrikhande A.
        • Ward K.
        • Tingley 3rd, F.D.
        • Coe J.W.
        • O’Neill B.T.
        • et al.
        Pre-clinical properties of the alpha4beta2 nicotinic acetylcholine receptor partial agonists varenicline, cytisine and dianicline translate to clinical efficacy for nicotine dependence.
        Br J Pharmacol. 2010; 160: 334-345
        • Caldarone B.
        • Harrist A.
        • Cleary M.
        • Beech R.
        • King S.
        • Picciotto M.
        High-affinity nicotinic acetylcholine receptors are required for antidepressant effects of amitriptyline on behavior and hippocampal cell proliferation.
        Biol Psychiatry. 2004; 56: 657-664
        • Philip N.S.
        • Carpenter L.L.
        • Tyrka A.R.
        • Price L.H.
        The nicotinic acetylcholine receptor as a target for antidepressant drug development [published online April 24].
        Sci World J. 2012;
        • Cavanagh J.
        • Patterson J.
        • Pimlott S.
        • Wyper D.
        • Dewar D.
        SSRI antidepressants do not confound single photon emission computed tomography (SPECT) imaging studies using the alpha4beta2 nicotinic acetylcholine receptor [123I]5-I-A85380 ligand: In vivo and in vitro evidence.
        Synapse. 2010; 64: 111-116
        • Shytle R.
        • Silver A.
        • Lukas R.
        • Newman M.
        • Sheehan D.
        • Sanberg P.
        Nicotinic acetylcholine receptors as targets for antidepressants.
        Mol Psychiatry. 2002; 7: 525-535
        • Breese C.
        • Lee M.
        • Adams C.
        • Sullivan B.
        • Logel J.
        • Gillen K.
        • et al.
        Abnormal regulation of high affinity nicotinic receptors in subjects with schizophrenia.
        Neuropsychopharmacology. 2000; 23: 351-364
        • Slemmer J.
        • Martin B.
        • Damaj M.
        Bupropion is a nicotinic agonist.
        J Pharmacol Exp Therap. 2000; 295: 321-327