Advertisement

Anomalous Gray Matter Structural Networks in Major Depressive Disorder

      Background

      Major depressive disorder (MDD) is characterized by abnormalities in structure, function, and connectivity in several brain regions. Few studies have examined how these regions are organized in the brain or investigated network-level structural aberrations that might be associated with depression.

      Methods

      We used graph analysis to examine the gray matter structural networks of individuals diagnosed with MDD (n = 93) and a demographically similar healthy comparison group (n = 151) with no history of psychopathology. The efficiency of structural networks for processing information was determined by quantifying local interconnectivity (clustering) and global integration (path length). We also compared the groups on the contributions of high-degree nodes (i.e., hubs) and regional network measures, including degree (number of connections in a node) and betweenness (fraction of short path connections in a node).

      Results

      Depressed participants had significantly decreased clustering in their brain networks across a range of network densities. Compared with control subjects, depressed participants had fewer hubs primarily in medial frontal and medial temporal areas, had higher degree in the left supramarginal gyrus and right gyrus rectus, and had higher betweenness in the right amygdala and left medial orbitofrontal gyrus.

      Conclusions

      Networks of depressed individuals are characterized by a less efficient organization involving decreased regional connectivity compared with control subjects. Regional connections in the amygdala and medial prefrontal cortex may play a role in maintaining or adapting to depressive pathology. This is the first report of anomalous large-scale gray matter structural networks in MDD and provides new insights concerning the neurobiological mechanisms associated with this disorder.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Culpepper L.
        Understanding the burden of depression.
        J Clin Psychiatry. 2011; 72: e19
        • Gotlib I.H.
        • Joormann J.
        Cognition and depression: Current status and future directions.
        Annu Rev Clin Psychol. 2010; 6: 285-312
        • Sacher J.
        • Neumann J.
        • Funfstuck T.
        • Soliman A.
        • Villringer A.
        • Schroeter M.L.
        Mapping the depressed brain: A meta-analysis of structural and functional alterations in major depressive disorder.
        J Affect Disord. 2012; 140: 142-148
        • Hamilton J.P.
        • Siemer M.
        • Gotlib I.H.
        Amygdala volume in major depressive disorder: A meta-analysis of magnetic resonance imaging studies.
        Mol Psychiatry. 2008; 13: 993-1000
        • Hamilton J.P.
        • Furman D.J.
        • Gotlib I.H.
        The neural foundations of major depression: Classical approaches and new frontiers.
        in: Lopez-Munoz F.F. Alamo C. Neurobiology of Depression. Taylor & Francis Group, Boca Raton, FL2011: 57-73
        • Amico F.
        • Meisenzahl E.
        • Koutsouleris N.
        • Reiser M.
        • Moller H.J.
        • Frodl T.
        Structural MRI correlates for vulnerability and resilience to major depressive disorder.
        J Psychiatry Neurosci. 2011; 36: 15-22
        • Shah P.J.
        • Ebmeier K.P.
        • Glabus M.F.
        • Goodwin G.M.
        Cortical grey matter reductions associated with treatment-resistant chronic unipolar depression. Controlled magnetic resonance imaging study.
        Br J Psychiatry. 1998; 172: 527-532
        • Cheng Y.Q.
        • Xu J.
        • Chai P.
        • Li H.J.
        • Luo C.R.
        • Yang T.
        • et al.
        Brain volume alteration and the correlations with the clinical characteristics in drug-naive first-episode MDD patients: A voxel-based morphometry study.
        Neurosci Lett. 2010; 480: 30-34
        • Korgaonkar M.S.
        • Grieve S.M.
        • Koslow S.H.
        • Gabrieli J.D.E.
        • Gordon E.
        • Williams L.M.
        Loss of white matter integrity in major depressive disorder: Evidence using tract-based spatial statistical analysis of diffusion tensor imaging.
        Hum Brain Mapp. 2011; 32: 2161-2171
        • Zeng L.L.
        • Shen H.
        • Liu L.
        • Wang L.
        • Li B.
        • Fang P.
        • et al.
        Identifying major depression using whole-brain functional connectivity: A multivariate pattern analysis.
        Brain. 2012; 135: 1498-1507
        • Bassett D.S.
        • Bullmore E.
        Small-world brain networks.
        Neuroscientist. 2006; 12: 512-523
        • Fan Y.
        • Shi F.
        • Smith J.K.
        • Lin W.
        • Gilmore J.H.
        • Shen D.
        Brain anatomical networks in early human brain development.
        Neuroimage. 2011; 54: 1862-1871
        • Iturria-Medina Y.
        • Canales-Rodriguez E.J.
        • Melie-Garcia L.
        • Valdes-Hernandez P.A.
        • Martinez-Montes E.
        • Aleman-Gomez Y.
        • Sánchez-Bornot J.M.
        Characterizing brain anatomical connections using diffusion weighted MRI and graph theory.
        Neuroimage. 2007; 36: 645-660
        • Chen Z.J.
        • He Y.
        • Rosa P.
        • Germann J.
        • Evans A.C.
        Revealing modular architecture of human brain structural networks by using cortical thickness from MRI.
        Cereb Cortex. 2008; 18: 2374-2381
        • He Y.
        • Chen Z.J.
        • Evans A.C.
        Small-world anatomical networks in the human brain revealed by cortical thickness from MRI.
        Cereb Cortex. 2007; 17: 2407-2419
        • Bassett D.S.
        • Bullmore E.T.
        Human brain networks in health and disease.
        Curr Opin Neurol. 2009; 22: 340-347
        • Gong G.
        • He Y.
        • Chen Z.
        • Evans A.
        Convergence and divergence of thickness correlations with diffusion connections across the human cerebral cortex.
        Neuroimage. 2012; 59: 1239-1248
        • Watts D.J.
        • Strogatz S.H.
        Collective dynamics of 'small-world' networks.
        Nature. 1998; 393: 440-442
        • Bullmore E.
        • Sporns O.
        Complex brain networks: Graph theoretical analysis of structural and functional systems.
        Nat Rev Neurosci. 2009; 10: 186-198
        • Leistedt S.J.
        • Coumans N.
        • Dumont M.
        • Lanquart J.P.
        • Stam C.J.
        • Linkowski P.
        Altered sleep brain functional connectivity in acutely depressed patients.
        Hum Brain Mapp. 2009; 30: 2207-2219
        • Zhang J.
        • Wang J.
        • Wu Q.
        • Kuang W.
        • Huang X.
        • He Y.
        • Gong Q.
        Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder.
        Biol Psychiatry. 2011; 70: 334-342
        • Jin C.
        • Gao C.
        • Chen C.
        • Ma S.
        • Netra R.
        • Wang Y.
        • et al.
        A preliminary study of the dysregulation of the resting networks in first-episode medication-naive adolescent depression.
        Neurosci Lett. 2011; 503: 105-109
        • First M.B.
        • Spitzer R.L.
        • Gibbon M.
        • Williams J.B.W.
        Structured Clinical Interview for DSM-IV Axis I Disorders-Patient Version (SCID-P).
        New York State Psychiatric Institute, Biometrics Research Department, New York1996
        • Beck A.T.
        • Steer R.A.
        • Brown G.K.
        Manual for the Beck Depression Inventory-II. Psychological Corporation, San Antonio, TX1996
        • Schnack H.G.
        • van Haren N.E.
        • Brouwer R.M.
        • van Baal G.C.
        • Picchioni M.
        • Weisbrod M.
        • et al.
        Mapping reliability in multicenter MRI: Voxel-based morphometry and cortical thickness.
        Hum Brain Mapp. 2010; 31: 1967-1982
        • Wilke M.
        • Holland S.K.
        • Altaye M.
        • Gaser C.
        Template-O-Matic: A toolbox for creating customized pediatric templates.
        Neuroimage. 2008; 41: 903-913
        • Ashburner J.
        • Friston K.J.
        Unified segmentation.
        Neuroimage. 2005; 26: 839-851
        • Tzourio-Mazoyer N.
        • Landeau B.
        • Papathanassiou D.
        • Crivello F.
        • Etard O.
        • Delcroix N.
        • et al.
        Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
        Neuroimage. 2002; 15: 273-289
        • Hosseini S.M.
        • Hoeft F.
        • Kesler S.R.
        Gat: A graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks.
        PLoS One. 2012; 7: e40709
        • Bernhardt B.C.
        • Chen Z.
        • He Y.
        • Evans A.C.
        • Bernasconi N.
        Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy.
        Cereb Cortex. 2011; 21: 2147-2157
        • He Y.
        • Dagher A.
        • Chen Z.
        • Charil A.
        • Zijdenbos A.
        • Worsley K.
        • et al.
        Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load.
        Brain. 2009; 132: 3366-3379
        • Zalesky A.
        • Fornito A.
        • Bullmore E.
        On the use of correlation as a measure of network connectivity.
        Neuroimage. 2012; 60: 2096-2106
        • Rubinov M.
        • Sporns O.
        Weight-conserving characterization of complex functional brain networks.
        Neuroimage. 2011; 56: 2068-2079
        • van Wijk B.C.M.
        • Stam C.J.
        • Daffertshofer A.
        Comparing brain networks of different size and connectivity density using graph theory.
        PLoS One. 2010; 5: e13701
        • Maslov S.
        • Sneppen K.
        Specificity and stability in topology of protein networks.
        Science. 2002; 296: 910-913
        • Milo R.
        • Shen-Orr S.
        • Itzkovitz S.
        • Kashtan N.
        • Chklovskii D.
        • Alon U.
        Network motifs: Simple building blocks of complex networks.
        Science. 2002; 298: 824-827
        • Hirschberger M.
        • Qi Y.
        • Steuer R.E.
        Randomly generating portfolio-selection covariance matrices with specified distributional characteristics.
        Eur J Oper Res. 2004; 177: 1610-1625
        • Rubinov M.
        • Sporns O.
        Complex network measures of brain connectivity: Uses and interpretations.
        Neuroimage. 2010; 52: 1059-1069
        • Hosseini S.M.H.
        • Black J.M.
        • Soriano T.
        • Bugescu N.
        • Martinez R.
        • Raman M.M.
        • et al.
        Topological properties of large-scale structural brain networks in children with familial risk for reading difficulties.
        Neuroimage. 2013; 71: 260-274
        • Hosseini S.M.H.
        • Koovakkattu D.
        • Kesler S.R.
        Altered small-world properties of gray matter networks in breast cancer.
        BMC Neurol. 2012; 12: 28
        • Bassett D.S.
        • Bullmore E.
        • Verchinski B.A.
        • Mattay V.S.
        • Weinberger D.R.
        • Meyer-Lindenberg A.
        Hierarchical organization of human cortical networks in health and schizophrenia.
        J Neurosci. 2008; 28: 9239-9248
        • He Y.
        • Chen Z.
        • Evans A.
        Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease.
        J Neurosci. 2008; 28: 4756-4766
        • Nichols T.E.
        • Holmes A.P.
        Nonparametric permutation tests for functional neuroimaging: A primer with examples.
        Hum Brain Mapp. 2001; 15: 1-25
        • Nichols T.E.
        • Hayasaka S.
        Controlling the familywise error rate in functional neuroimaging: A comparative review.
        Stat Methods Med Res. 2003; 12: 419-446
        • Bassett D.S.
        • Nelson B.G.
        • Mueller B.A.
        • Camchong J.
        • Lim K.O.
        Altered resting state complexity in schizophrenia.
        Neuroimage. 2012; 59: 2196-2207
        • Ramsay J.O.
        • Silverman B.W.
        Functional Data Analysis.
        Springer, New York2005
        • Menon V.
        Large-scale brain networks and psychopathology: A unifying triple network model.
        Trends Cogn Sci. 2011; 15: 483-506
        • Desseilles M.
        • Schwartz S.
        • Dang-Vu T.T.
        • Sterpenich V.
        • Ansseau M.
        • Maquet P.
        • Phillips C.
        Depression alters "top-down" visual attention: A dynamic causal modeling comparison between depressed and healthy subjects.
        Neuroimage. 2011; 54: 1662-1668
        • Carballedo A.
        • Scheuerecker J.
        • Meisenzahl E.
        • Schoepf V.
        • Bokde A.
        • Moller H.J.
        • et al.
        Functional connectivity of emotional processing in depression.
        J Affect Disord. 2011; 134: 272-279
        • Catani M.
        • ffytche D.H.
        The rises and falls of disconnection syndromes.
        Brain. 2005; 128: 2224-2239
        • Catani M.
        • Dell’acqua F.
        • Bizzi A.
        • Forkel S.J.
        • Williams S.C.
        • Simmons A.
        • et al.
        Beyond cortical localization in clinic-anatomical correlation.
        Cortex. 2012; 48: 1262-1287
        • Zhang K.
        • Sejnowsky T.J.
        A universal scaling law between gray matter and white matter of cerebral cortex.
        Proc Natl Acad Sci U S A. 2000; 97: 5621-5626
        • Wu F.
        • Tang Y.
        • Xu K.
        • Kong L.
        • Sun W.
        • Wang F.
        • et al.
        White matter abnormalities in medication-naive subjects with a single short-duration episode of major depressive disorder.
        Psychiatry Res. 2011; 191: 80-83
        • Blood A.J.
        • Iosifescu D.V.
        • Makris N.
        • Perlis R.H.
        • Kennedy D.N.
        • Dougherty D.D.
        • et al.
        Microstructural abnormalities in subcortical reward circuitry of subjects with major depressive disorder.
        PLoS One. 2010; 5: e13945
        • Bai F.
        • Shu N.
        • Yuan Y.
        • Shi Y.
        • Yu H.
        • Wu D.
        • et al.
        Topologically convergent and divergent structural connectivity patterns between patients with remitted geriatric depression and amnestic mild cognitive impairment.
        J Neurosci. 2012; 32: 4307-4318
        • Mwangi B.
        • Ebmeier K.P.
        • Matthews K.
        • Steele J.D.
        Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder.
        Brain. 2012; 135: 1508-1521
        • Fang P.
        • Zeng L.L.
        • Shen H.
        • Wang L.
        • Li B.
        • Liu L.
        • Hu D.
        Increased cortical-limbic anatomical network connectivity in major depression revealed by diffusion tensor imaging.
        PLoS One. 2012; 7: e45972
        • Sporns O.
        The human connectome: A complex network.
        Ann N Y Acad Sci. 2011; 1224: 109-125
        • Guilloux J.P.
        • Douillard-Guilloux G.
        • Kota R.
        • Wang X.
        • Gardier A.M.
        • Martinowich K.
        • et al.
        Molecular evidence for BDNF- and GABA-related dysfunctions in the amygdala of female subjects with major depression.
        Mol Psychiatry. 2011; 17: 1130-1142
        • Hamani C.
        • Mayberg H.
        • Stone S.
        • Laxton A.
        • Haber S.
        • Lozano A.M.
        The subcallosal cingulate gyrus in the context of major depression.
        Biol Psychiatry. 2011; 69: 301-308
        • Lu Q.
        • Li H.
        • Luo G.
        • Wang Y.
        • Tang H.
        • Han L.
        • Yao Z.
        Impaired prefrontal-amygdala effective connectivity is responsible for the dysfunction of emotion process in major depressive disorder: A dynamic causal modeling study on MEG.
        Neurosci Lett. 2012; 523: 125-130
        • Mayberg H.S.
        • Lozano A.M.
        • Voon V.
        • McNeely H.E.
        • Seminowicz D.
        • Hamani C.
        • et al.
        Deep brain stimulation for treatment-resistant depression.
        Neuron. 2005; 45: 651-660
        • Johansen-Berg H.
        • Gutman D.A.
        • Behrens T.E.
        • Matthews P.M.
        • Rushworth M.F.
        • Katz E.
        • et al.
        Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression.
        Cereb Cortex. 2008; 18: 1374-1383
        • Pizzagalli D.A.
        Frontocingulate dysfunction in depression: Toward biomarkers of treatment response.
        Neuropsychopharmacology. 2011; 36: 183-206
        • Hamilton J.P.
        • Chen G.
        • Thomason M.E.
        • Schwartz M.E.
        • Gotlib I.H.
        Investigating neural primacy in major depressive disorder: Multivariate granger causality analysis of resting-state fMRI time-series data.
        Mol Psychiatry. 2011; 16: 763-772
        • Frodl T.
        • Bokde A.L.
        • Scheuerecker J.
        • Lisiecka D.
        • Schoepf V.
        • Hampel H.
        • et al.
        Functional connectivity bias of the orbitofrontal cortex in drug-free patients with major depression.
        Biol Psychiatry. 2010; 67: 161-167
        • Mayberg H.S.
        • Liotti M.
        • Brannan S.K.
        • McGinnis S.
        • Mahurin R.K.
        • Jerabek P.A.
        • et al.
        Reciprocal limbic-cortical function and negative mood: Converging PET findings in depression and normal sadness.
        Am J Psychiatry. 1999; 156: 675-682
        • Lemogne C.
        • Delaveau P.
        • Freton M.
        • Guionnet S.
        • Fossati P.
        Medial prefrontal cortex and the self in major depression.
        J Affect Disord. 2012; 136: e1-e11
        • Hamilton J.P.
        • Furman D.J.
        • Chang C.
        • Thomason M.E.
        • Dennis E.
        • Gotlib I.H.
        Default-mode and task-positive network activity in major depressive disorder: Implications for adaptive and maladaptive rumination.
        Biol Psychiatry. 2011; 70: 327-333
        • Greicius M.D.
        • Supekar K.
        • Menon V.
        • Dougherty R.F.
        Resting-state functional connectivity reflects structural connectivity in the default mode network.
        Cereb Cortex. 2009; 19: 72-78