Advertisement

How Might Circadian Rhythms Control Mood? Let Me Count the Ways...

  • Colleen A. McClung
    Correspondence
    Address correspondence to Colleen A. McClung, Ph.D., University of Pittsburgh School of Medicine, Department of Psychiatry and Translational Neuroscience Program, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219
    Affiliations
    Department of Psychiatry and Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
    Search for articles by this author
      Mood disorders are serious diseases that affect a large portion of the population. There have been many hypotheses put forth over the years to explain the development of major depression, bipolar disorder, and other mood disorders. These hypotheses include disruptions in monoamine transmission, hypothalamus-pituitary-adrenal axis function, immune function, neurogenesis, mitochondrial dysfunction, and neuropeptide signaling (to name a few). Nearly all people suffering from mood disorders have significant disruptions in circadian rhythms and the sleep/wake cycle. In fact, altered sleep patterns are one of the major diagnostic criteria for these disorders. Moreover, environmental disruptions to circadian rhythms, including shift work, travel across time zones, and irregular social schedules, tend to precipitate or exacerbate mood-related episodes. Recent studies have found that molecular clocks are found throughout the brain and body where they participate in the regulation of most physiological processes, including those thought to be involved in mood regulation. This review will summarize recent data that implicate the circadian system as a vital regulator of a variety of systems that are thought to play a role in the development of mood disorders.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rush A.J.
        • Trivedi M.H.
        • Wisniewski S.R.
        • Nierenberg A.A.
        • Stewart J.W.
        • Warden D.
        • et al.
        Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report.
        Am J Psychiatry. 2006; 163: 1905-1917
        • Wirz-Justice A.
        Biological rhythm disturbances in mood disorders.
        Int Clin Psychopharmacol. 2006; 21: S11-S15
        • McClung C.A.
        Circadian genes, rhythms and the biology of mood disorders.
        Pharmacol Ther. 2007; 114: 222-232
        • Ehlers C.L.
        • Frank E.
        • Kupfer D.J.
        Social zeitgebers and biological rhythms. A unified approach to understanding the etiology of depression.
        Arch Gen Psychiatry. 1988; 45: 948-952
        • Baglioni C.
        • Riemann D.
        Is chronic insomnia a precursor to major depression? Epidemiological and biological findings.
        Curr Psychiatry Rep. 2012; 14: 511-518
        • Manber R.
        • Chambers A.S.
        Insomnia and depression: A multifaceted interplay.
        Curr Psychiatry Rep. 2009; 11: 437-442
        • Albrecht U.
        Timing to perfection: The biology of central and peripheral circadian clocks.
        Neuron. 2012; 74: 246-260
        • Son G.H.
        • Chung S.
        • Kim K.
        The adrenal peripheral clock: Glucocorticoid and the circadian timing system.
        Front Neuroendocrinol. 2011; 32: 451-465
        • Buhr E.D.
        • Yoo S.H.
        • Takahashi J.S.
        Temperature as a universal resetting cue for mammalian circadian oscillators.
        Science. 2010; 330: 379-385
        • Etain B.
        • Milhiet V.
        • Bellivier F.
        • Leboyer M.
        Genetics of circadian rhythms and mood spectrum disorders.
        Eur Neuropsychopharmacol. 2011; 21: S676-S682
        • Milhiet V.
        • Etain B.
        • Boudebesse C.
        • Bellivier F.
        Circadian biomarkers, circadian genes and bipolar disorders.
        J Physiol Paris. 2011; 105: 183-189
        • McClung C.A.
        Circadian rhythms and mood regulation: Insights from pre-clinical models.
        Eur Neuropsychopharmacol. 2011; 21: S683-S693
        • King D.P.
        • Zhao Y.
        • Sangoram A.M.
        • Wilsbacher L.D.
        • Tanaka M.
        • Antoch M.P.
        • et al.
        Positional cloning of the mouse circadian clock gene.
        Cell. 1997; 89: 641-653
        • Roybal K.
        • Theobold D.
        • Graham A.
        • DiNieri J.A.
        • Russo S.J.
        • Krishnan V.
        • et al.
        Mania-like behavior induced by disruption of CLOCK.
        Proc Natl Acad Sci U S A. 2007; 104: 6406-6411
        • Prickaerts J.
        • Moechars D.
        • Cryns K.
        • Lenaerts I.
        • van Craenendonck H.
        • Goris I.
        • et al.
        Transgenic mice overexpressing glycogen synthase kinase 3beta: A putative model of hyperactivity and mania.
        J Neurosci. 2006; 26: 9022-9029
        • Keers R.
        • Pedroso I.
        • Breen G.
        • Aitchison K.J.
        • Nolan P.M.
        • Cichon S.
        • et al.
        Reduced anxiety and depression-like behaviours in the circadian period mutant mouse afterhours.
        PLoS One. 2012; 7: e38263
        • Nakahata Y.
        • Sahar S.
        • Astarita G.
        • Kaluzova M.
        • Sassone-Corsi P.
        Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1.
        Science. 2009; 324: 654-657
        • Libert S.
        • Pointer K.
        • Bell E.L.
        • Das A.
        • Cohen D.E.
        • Asara J.M.
        • et al.
        SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive.
        Cell. 2011; 147: 1459-1472
        • Hampp G.
        • Albrecht U.
        The circadian clock and mood-related behavior.
        Commun Integr Biol. 2008; 1: 1-3
        • Spencer S.
        • Falcon E.
        • Kumar J.
        • Krishnan V.
        • Mukherjee S.
        • Birnbaum S.G.
        • McClung C.A.
        Circadian genes Period 1 and Period 2 in the nucleus accumbens regulate anxiety-related behavior.
        Eur J Neurosci. 2013; 37: 242-250
        • Meyer J.H.
        Applying neuroimaging ligands to study major depressive disorder.
        Semin Nucl Med. 2008; 38: 287-304
        • Chaudhury D.
        • Walsh J.J.
        • Friedman A.K.
        • Juarez B.
        • Ku S.M.
        • Koo J.W.
        • et al.
        Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons.
        Nature. 2013; 493: 532-536
        • Tye K.M.
        • Mirzabekov J.J.
        • Warden M.R.
        • Ferenczi E.A.
        • Tsai H.C.
        • Finkelstein J.
        • et al.
        Dopamine neurons modulate neural encoding and expression of depression-related behaviour.
        Nature. 2013; 493: 537-541
        • Chenu F.
        • El Mansari M.
        • Blier P.
        Electrophysiological effects of repeated administration of agomelatine on the dopamine, norepinephrine, and serotonin systems in the rat brain.
        Neuropsychopharmacology. 2013; 38: 275-284
        • Hampp G.
        • Ripperger J.A.
        • Houben T.
        • Schmutz I.
        • Blex C.
        • Perreau-Lenz S.
        • et al.
        Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood.
        Curr Biol. 2008; 18: 678-683
        • Coque L.
        • Mukherjee S.
        • Cao J.L.
        • Spencer S.
        • Marvin M.
        • Falcon E
        • et al.
        Specific role of VTA dopamine neuronal firing rates and morphology in the reversal of anxiety-related, but not depression-related behavior in the ClockDelta19 mouse model of mania.
        Neuropsychopharmacology. 2011; 36: 1478-1488
        • McClung C.A.
        • Sidiropoulou K.
        • Vitaterna M.
        • Takahashi J.S.
        • White F.J.
        • Cooper D.C.
        • Nestler E.J.
        Regulation of dopaminergic transmission and cocaine reward by the Clock gene.
        Proc Natl Acad Sci U S A. 2005; 102: 9377-9381
        • Kumar S.
        • Chen D.
        • Sehgal A.
        Dopamine acts through Cryptochrome to promote acute arousal in Drosophila.
        Genes Dev. 2012; 26: 1224-1234
        • Mukherjee S.
        • Coque L.
        • Cao J.L.
        • Kumar J.
        • Chakravarty S.
        • Asaithamby A.
        • et al.
        Knockdown of Clock in the ventral tegmental area through RNA interference results in a mixed state of mania and depression-like behavior.
        Biol Psychiatry. 2010; 68: 503-511
        • Raison C.L.
        • Miller A.H.
        Is depression an inflammatory disorder?.
        Curr Psychiatry Rep. 2011; 13: 467-475
        • Dantzer R.
        • O'Connor J.C.
        • Freund G.G.
        • Johnson R.W.
        • Kelley K.W.
        From inflammation to sickness and depression: When the immune system subjugates the brain.
        Nat Rev Neurosci. 2008; 9: 46-56
        • Miller A.H.
        • Maletic V.
        • Raison C.L.
        Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression.
        Biol Psychiatry. 2009; 65: 732-741
        • Eyre H.
        • Baune B.T.
        Neuroplastic changes in depression: A role for the immune system.
        Psychoneuroendocrinology. 2012; 37: 1397-1416
        • Koo J.W.
        • Russo S.J.
        • Ferguson D.
        • Nestler E.J.
        • Duman R.S.
        Nuclear factor-kappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior.
        Proc Natl Acad Sci U S A. 2010; 107: 2669-2674
        • Imeri L.
        • Opp M.R.
        How (and why) the immune system makes us sleep.
        Nat Rev Neurosci. 2009; 10: 199-210
        • Logan R.W.
        • Sarkar D.K.
        Circadian nature of immune function.
        Mol Cell Endocrinol. 2012; 349: 82-90
        • Narasimamurthy R.
        • Hatori M.
        • Nayak S.K.
        • Liu F.
        • Panda S.
        • Verma I.M.
        Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines.
        Proc Natl Acad Sci U S A. 2012; 109: 12662-12667
        • Gibbs J.E.
        • Blaikley J.
        • Beesley S.
        • Matthews L.
        • Simpson K.D.
        • Boyce S.H.
        • et al.
        The nuclear receptor REV-ERBalpha mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines.
        Proc Natl Acad Sci U S A. 2012; 109: 582-587
        • Bechtold D.A.
        • Gibbs J.E.
        • Loudon A.S.
        Circadian dysfunction in disease.
        Trends Pharmacol Sci. 2010; 31: 191-198
        • Beynon A.L.
        • Coogan A.N.
        Diurnal, age, and immune regulation of interleukin-1beta and interleukin-1 type 1 receptor in the mouse suprachiasmatic nucleus.
        Chronobiol Int. 2010; 27: 1546-1563
        • Monje F.J.
        • Cabatic M.
        • Divisch I.
        • Kim E.J.
        • Herkner K.R.
        • Binder B.R.
        • Pollak D.D.
        Constant darkness induces IL-6-dependent depression-like behavior through the NF-kappaB signaling pathway.
        J Neurosci. 2011; 31: 9075-9083
        • Spengler M.L.
        • Kuropatwinski K.K.
        • Comas M.
        • Gasparian A.V.
        • Fedtsova N.
        • Gleiberman A.S.
        • et al.
        Core circadian protein CLOCK is a positive regulator of NF-kappaB-mediated transcription.
        Proc Natl Acad Sci U S A. 2012; 109: E2457-E2465
        • Delerive P.
        • Monte D.
        • Dubois G.
        • Trottein F.
        • Fruchart-Najib J.
        • Mariani J.
        • et al.
        The orphan nuclear receptor ROR alpha is a negative regulator of the inflammatory response.
        EMBO Rep. 2001; 2: 42-48
        • Warner-Schmidt J.L.
        • Vanover K.E.
        • Chen E.Y.
        • Marshall J.J.
        • Greengard P.
        Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflammatory drugs in mice and humans.
        Proc Natl Acad Sci U S A. 2011; 108: 9262-9267
        • Kronenberg S.
        Anti-inflammatory drugs as moderators of antidepressant effects, especially those of the selective serotonin-reuptake inhibitor class.
        Expert Rev Clin Pharmacol. 2011; 4: 575-578
        • Gallagher P.J.
        • Castro V.
        • Fava M.
        • Weilburg J.B.
        • Murphy S.N.
        • Gainer V.S.
        • et al.
        Antidepressant response in patients with major depression exposed to NSAIDs: A pharmacovigilance study.
        Am J Psychiatry. 2012; 169: 1065-1072
        • Muller N.
        • Schwarz M.J.
        • Dehning S.
        • Douhe A.
        • Cerovecki A.
        • Goldstein-Muller B.
        • et al.
        The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: Results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine.
        Mol Psychiatry. 2006; 11: 680-684
        • Tyring S.
        • Gottlieb A.
        • Papp K.
        • Gordon K.
        • Leonardi C.
        • Wang A.
        • et al.
        Etanercept and clinical outcomes, fatigue, and depression in psoriasis: Double-blind placebo-controlled randomised phase III trial.
        Lancet. 2006; 367: 29-35
        • Pae C.U.
        • Marks D.M.
        • Han C.
        • Patkar A.A.
        Does minocycline have antidepressant effect?.
        Biomed Pharmacother. 2008; 62: 308-311
        • Lamia K.A.
        • Papp S.J.
        • Yu R.T.
        • Barish G.D.
        • Uhlenhaut N.H.
        • Jonker J.W.
        • et al.
        Cryptochromes mediate rhythmic repression of the glucocorticoid receptor.
        Nature. 2011; 480: 552-556
        • Charmandari E.
        • Chrousos G.P.
        • Lambrou G.I.
        • Pavlaki A.
        • Koide H.
        • Ng S.S.
        • Kino T.
        Peripheral CLOCK regulates target-tissue glucocorticoid receptor transcriptional activity in a circadian fashion in man.
        PLoS One. 2011; 6: e25612
        • Frodl T.
        • O'Keane V.
        How does the brain deal with cumulative stress? A review with focus on developmental stress, HPA axis function and hippocampal structure in humans.
        Neurobiol Dis. 2013; 52: 24-37
        • Wolkowitz O.M.
        • Burke H.
        • Epel E.S.
        • Reus V.I.
        Glucocorticoids. Mood, memory, and mechanisms.
        Ann N Y Acad Sci. 2009; 1179: 19-40
        • Carvalho L.A.
        • Garner B.A.
        • Dew T.
        • Fazakerley H.
        • Pariante C.M.
        Antidepressants, but not antipsychotics, modulate GR function in human whole blood: An insight into molecular mechanisms.
        Eur Neuropsychopharmacol. 2010; 20: 379-387
        • Pan A.
        • Keum N.
        • Okereke O.I.
        • Sun Q.
        • Kivimaki M.
        • Rubin R.R.
        • Hu F.B.
        Bidirectional association between depression and metabolic syndrome: A systematic review and meta-analysis of epidemiological studies.
        Diabetes Care. 2012; 35: 1171-1180
        • Cagampang F.R.
        • Bruce K.D.
        The role of the circadian clock system in nutrition and metabolism.
        Br J Nutr. 2012; 108: 381-392
        • Turek F.W.
        • Joshu C.
        • Kohsaka A.
        • Lin E.
        • Ivanova G.
        • McDearmon E.
        • et al.
        Obesity and metabolic syndrome in circadian Clock mutant mice.
        Science. 2005; 308: 1043-1045
        • Feillet C.A.
        Food for thoughts: Feeding time and hormonal secretion.
        J Neuroendocrinol. 2010; 22: 620-628
        • Huang W.
        • Ramsey K.M.
        • Marcheva B.
        • Bass J.
        Circadian rhythms, sleep, and metabolism.
        J Clin Invest. 2011; 121: 2133-2141
        • Adamantidis A.
        • de Lecea L
        Sleep and metabolism: Shared circuits, new connections.
        Trends Endocrinol Metab. 2008; 19: 362-370
        • Nishino S.
        • Okuro M.
        • Kotorii N.
        • Anegawa E.
        • Ishimaru Y.
        • Matsumura M.
        • Kanbayashi T.
        Hypocretin/orexin and narcolepsy: New basic and clinical insights.
        Acta Physiol (Oxf). 2010; 198: 209-222
        • Dockray G.J.
        Cholecystokinin.
        Curr Opin Endocrinol Diabetes Obes. 2012; 19: 8-12
        • Rotzinger S.
        • Vaccarino F.J.
        Cholecystokinin receptor subtypes: Role in the modulation of anxiety-related and reward-related behaviours in animal models.
        J Psychiatry Neurosci. 2003; 28: 171-181
        • Hannibal J.
        • Hundahl C.
        • Fahrenkrug J.
        • Rehfeld J.F.
        • Friis-Hansen L.
        Cholecystokinin (CCK)-expressing neurons in the suprachiasmatic nucleus: Innervation, light responsiveness and entrainment in CCK-deficient mice.
        Eur J Neurosci. 2010; 32: 1006-1017
        • Ogaya M.
        • Kim J.
        • Sasaki K.
        Ghrelin postsynaptically depolarizes dorsal raphe neurons in rats in vitro.
        Peptides. 2011; 32: 1606-1616
        • Jerlhag E.
        • Egecioglu E.
        • Dickson S.L.
        • Douhan A.
        • Svensson L.
        • Engel J.A.
        Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens.
        Addict Biol. 2007; 12: 6-16
        • Fulton S.
        • Pissios P.
        • Manchon R.P.
        • Stiles L.
        • Frank L.
        • Pothos E.N.
        • et al.
        Leptin regulation of the mesoaccumbens dopamine pathway.
        Neuron. 2006; 51: 811-822
        • Spencer S.J.
        • Xu L.
        • Clarke M.A.
        • Lemus M.
        • Reichenbach A.
        • Geenen B.
        • et al.
        Ghrelin regulates the hypothalamic-pituitary-adrenal axis and restricts anxiety after acute stress.
        Biol Psychiatry. 2012; 72: 457-465
        • Lutter M.
        • Sakata I.
        • Osborne-Lawrence S.
        • Rovinsky S.A.
        • Anderson J.G.
        • Jung S.
        • et al.
        The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress.
        Nat Neurosci. 2008; 11: 752-753
        • Krishnan V.
        • Han M.H.
        • Graham D.L.
        • Berton O.
        • Renthal W.
        • Russo S.J.
        • et al.
        Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions.
        Cell. 2007; 131: 391-404
        • Kumar J.
        • Chuang J.C.
        • Na E.S.
        • Kuperman A.
        • Gillman A.G.
        • Mukherjee S.
        • et al.
        Differential effects of chronic social stress and fluoxetine on meal patterns in mice.
        Appetite. 2013; 64C: 81-88
        • Zwanzger P.
        • Domschke K.
        • Bradwejn J.
        Neuronal network of panic disorder: The role of the neuropeptide cholecystokinin.
        Depress Anxiety. 2012; 29: 762-774
        • Hernando F.
        • Fuentes J.A.
        • Fournie-Zaluski M.C.
        • Roques B.P.
        • Ruiz-Gayo M.
        Antidepressant-like effects of CCK(B) receptor antagonists: Involvement of the opioid system.
        Eur J Pharmacol. 1996; 318: 221-229
        • Becker C.
        • Zeau B.
        • Rivat C.
        • Blugeot A.
        • Hamon M.
        • Benoliel J.J.
        Repeated social defeat-induced depression-like behavioral and biological alterations in rats: Involvement of cholecystokinin.
        Mol Psychiatry. 2008; 13: 1079-1092
        • Weber M.
        • Lauterburg T.
        • Tobler I.
        • Burgunder J.M.
        Circadian patterns of neurotransmitter related gene expression in motor regions of the rat brain.
        Neurosci Lett. 2004; 358: 17-20
      1. Arey R, Enwright JF 3rd, Spencer SM, Falcon E, Ozburn AR, Ghose S, et al. (2013): An important role for Cholecystokinin, a CLOCK target gene, in the development and treatment of manic-like behaviors [published online ahead of print February 12]. Mol Psychiatry.

        • Del Boca C.
        • Lutz P.E.
        • Le Merrer J.
        • Koebel P.
        • Kieffer B.L.
        Cholecystokinin knock-down in the basolateral amygdala has anxiolytic and antidepressant-like effects in mice.
        Neuroscience. 2012; 218: 185-195
        • Lucassen E.A.
        • Rother K.I.
        • Cizza G.
        Interacting epidemics? Sleep curtailment, insulin resistance, and obesity.
        Ann N Y Acad Sci. 2012; 1264: 110-134
        • Manji H.
        • Kato T.
        • Di Prospero N.A.
        • Ness S.
        • Beal M.F.
        • Krams M.
        • Chen G.
        Impaired mitochondrial function in psychiatric disorders.
        Nat Rev Neurosci. 2012; 13: 293-307
        • Clay H.B.
        • Sillivan S.
        • Konradi C.
        Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia.
        Int J Dev Neurosci. 2011; 29: 311-324
        • Kasahara T.
        • Kubota M.
        • Miyauchi T.
        • Noda Y.
        • Mouri A.
        • Nabeshima T.
        • Kato T.
        Mice with neuron-specific accumulation of mitochondrial DNA mutations show mood disorder-like phenotypes.
        Mol Psychiatry. 2006; 11: 523
        • Bellet M.M.
        • Orozco-Solis R.
        • Sahar S.
        • Eckel-Mahan K.
        • Sassone-Corsi P.
        The time of metabolism: NAD+, SIRT1, and the circadian clock.
        Cold Spring Harb Symp Quant Biol. 2011; 76: 31-38
        • Nakahata Y.
        • Kaluzova M.
        • Grimaldi B.
        • Sahar S.
        • Hirayama J.
        • Chen D.
        • et al.
        The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control.
        Cell. 2008; 134: 329-340
        • Pimentel G.D.
        • Ropelle E.R.
        • Rocha G.Z.
        • Carvalheira J.B.
        The role of neuronal AMPK as a mediator of nutritional regulation of food intake and energy homeostasis.
        Metabolism. 2013; 62: 171-178
        • Li J.
        • McCullough L.D.
        Effects of AMP-activated protein kinase in cerebral ischemia.
        J Cereb Blood Flow Metab. 2010; 30: 480-492
        • Um J.H.
        • Yang S.
        • Yamazaki S.
        • Kang H.
        • Viollet B.
        • Foretz M.
        • Chung J.H.
        Activation of 5'-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2.
        J Biol Chem. 2007; 282: 20794-20798
        • Lin J.D.
        Minireview: The PGC-1 coactivator networks: Chromatin-remodeling and mitochondrial energy metabolism.
        Mol Endocrinol. 2009; 23: 2-10
        • Guo B.
        • Chatterjee S.
        • Li L.
        • Kim J.M.
        • Lee J.
        • Yechoor V.K.
        • et al.
        The clock gene, brain and muscle Arnt-like 1, regulates adipogenesis via Wnt signaling pathway.
        FASEB J. 2012; 26: 3453-3463
        • Voleti B.
        • Duman R.S.
        The roles of neurotrophic factor and Wnt signaling in depression.
        Clin Pharmacol Ther. 2012; 91: 333-338
        • Hemmerle A.M.
        • Herman J.P.
        • Seroogy K.B.
        Stress, depression and Parkinson's disease.
        Exp Neurol. 2012; 233: 79-86
        • Eisch A.J.
        • Petrik D.
        Depression and hippocampal neurogenesis: A road to remission?.
        Science. 2012; 338: 72-75
        • Gilhooley M.J.
        • Pinnock S.B.
        • Herbert J.
        Rhythmic expression of per1 in the dentate gyrus is suppressed by corticosterone: Implications for neurogenesis.
        Neurosci Lett. 2011; 489: 177-181
        • Tamai S.
        • Sanada K.
        • Fukada Y.
        Time-of-day-dependent enhancement of adult neurogenesis in the hippocampus.
        PLoS One. 2008; 3: e3835
        • Borgs L.
        • Beukelaers P.
        • Vandenbosch R.
        • Nguyen L.
        • Moonen G.
        • Maquet P.
        • et al.
        Period 2 regulates neural stem/progenitor cell proliferation in the adult hippocampus.
        BMC Neurosci. 2009; 10: 30
        • Gibson E.M.
        • Wang C.
        • Tjho S.
        • Khattar N.
        • Kriegsfeld L.J.
        Experimental 'jet lag' inhibits adult neurogenesis and produces long-term cognitive deficits in female hamsters.
        PLoS One. 2010; 5: e15267
        • Kott J.
        • Leach G.
        • Yan L.
        Direction-dependent effects of chronic "jet-lag" on hippocampal neurogenesis.
        Neurosci Lett. 2012; 515: 177-180
        • Huang G.J.
        • Herbert J.
        Stimulation of neurogenesis in the hippocampus of the adult rat by fluoxetine requires rhythmic change in corticosterone.
        Biol Psychiatry. 2006; 59: 619-624
        • Pinnock S.B.
        • Herbert J.
        Brain-derived neurotropic factor and neurogenesis in the adult rat dentate gyrus: Interactions with corticosterone.
        Eur J Neurosci. 2008; 27: 2493-2500
        • Schaaf M.J.
        • Duurland R.
        • de Kloet E.R.
        • Vreugdenhil E.
        Circadian variation in BDNF mRNA expression in the rat hippocampus.
        Brain Res Mol Brain Res. 2000; 75: 342-344
        • Dolci C.
        • Montaruli A.
        • Roveda E.
        • Barajon I.
        • Vizzotto L.
        • Grassi Zucconi G.
        • Carandente F.
        Circadian variations in expression of the trkB receptor in adult rat hippocampus.
        Brain Res. 2003; 994: 67-72

      Linked Article

      • Much Ado About…A Moody Clock
        Biological PsychiatryVol. 74Issue 4
        • Preview
          There are two main reasons for the growing interest in the dependence of mood disorders on the circadian clock and its connected pathways. First, the successful translation of findings in model organisms to in vivo human research points to a possible unitary framework for the pathophysiology of depression and mania. Second, chronobiology has inspired a set of novel treatments for both manic and depressive mood episodes, which have been successfully tested in controlled trials and applied in many clinical settings.
        • Full-Text
        • PDF