Advertisement

Ventral Striatum Binding of a Dopamine D2/3 Receptor Agonist But Not Antagonist Predicts Normal Body Mass Index

  • Fernando Caravaggio
    Affiliations
    Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada

    Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
    Search for articles by this author
  • Sofia Raitsin
    Affiliations
    Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada

    Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
    Search for articles by this author
  • Philip Gerretsen
    Affiliations
    Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada

    Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada

    Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
    Search for articles by this author
  • Shinichiro Nakajima
    Affiliations
    Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada

    Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
    Search for articles by this author
  • Alan Wilson
    Affiliations
    Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada

    Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada

    Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
    Search for articles by this author
  • Ariel Graff-Guerrero
    Correspondence
    Address correspondence to Ariel Graff-Guerrero, M.D., M.Sc., 250 College Street, Toronto, Ontario, Canada M5T 1R8
    Affiliations
    Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada

    Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada

    Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
    Search for articles by this author

      Abstract

      Background

      Positron emission tomography research has shown that dopamine D2/3 receptor (D2/3R) availability is negatively correlated with body mass index (BMI) in obese but not in healthy subjects. However, previous positron emission tomography studies have not looked specifically at the ventral striatum (VS), which plays an important role in motivation and feeding. Furthermore, these studies have only used antagonist radiotracers. Normal-weight rats given free access to high-fat diets demonstrate behavioral sensitization to D2/3R agonists but not to antagonists. Sensitization is associated with increased D2/3R affinity, which affects binding of agonists but not antagonists.

      Methods

      We examined the association between BMI within the nonobese range (18.6–27.8) and D2/3R availability in the VS with the use of the agonist radiotracer [11C]-(+)-PHNO (n = 26) and the antagonist [11C]-raclopride (n = 35) in healthy humans.

      Results

      In the VS, we found a positive correlation between BMI and [11C]-(+)-PHNO binding but no relationship with [11C]-raclopride binding. Secondary analyses revealed no relationship between BMI and binding in the dorsal striatum with either radiotracer.

      Conclusions

      We propose that in nonobese individuals, higher BMI may be associated with increased D2R affinity in the VS. This increased affinity may potentiate the incentive salience of food cues and counteract the effects of satiety cues, thereby increasing feeding.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ogden C.L.C.M.
        • Kit B.K.
        • Flegal K.M.
        Prevalence of Obesity in the United States, 2009–2010. NCHS Data Brief, No 82.
        National Center for Health Statistics, Hyattsville, MD2012
        • Volkow N.D.
        • Wang G.-J.
        • Baler R.D.
        Reward, dopamine and the control of food intake: Implications for obesity.
        Trends Cogn Sciences. 2011; 15: 37-46
        • Johnson P.M.
        • Kenny P.J.
        Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats.
        Nat Neurosci. 2010; 13: 635-641
        • Huang X.F.
        • Zavitsanou K.
        • Huang X.
        • Yu Y.
        • Wang H.
        • Chen F.
        • et al.
        Dopamine transporter and D2 receptor binding densities in mice prone or resistant to chronic high fat diet-induced obesity.
        Behav Brain Res. 2006; 175: 415-419
        • Wang G.J.
        • Volkow N.D.
        • Logan J.
        • Pappas N.R.
        • Wong C.T.
        • Zhu W.
        • et al.
        Brain dopamine and obesity.
        Lancet. 2001; 357: 354-357
        • Volkow N.D.
        • Wang G.J.
        • Telang F.
        • Fowler J.S.
        • Thanos P.K.
        • Logan J.
        • et al.
        Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors.
        Neuroimage. 2008; 42: 1537-1543
        • Haltia L.T.
        • Rinne J.O.
        • Merisaari H.
        • Maguire R.P.
        • Savontaus E.
        • Helin S.
        • et al.
        Effects of intravenous glucose on dopaminergic function in the human brain in vivo.
        Synapse. 2007; 61: 748-756
        • de Weijer B.
        • van de Giessen E.
        • van Amelsvoort T.
        • Boot E.
        • Braak B.
        • Janssen I.
        • et al.
        Lower striatal dopamine D2/3 receptor availability in obese compared with non-obese subjects.
        Eur J Nucl Med Mol Imaging. 2011; 1: 37
        • Michaelides M.
        • Thanos P.K.
        • Kim R.
        • Cho J.
        • Ananth M.
        • Wang G.-J.
        • et al.
        PET imaging predicts future body weight and cocaine preference.
        Neuroimage. 2012; 59: 1508-1513
        • Demos K.E.
        • Heatherton T.F.
        • Kelley W.M.
        Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior.
        J Neurosci. 2012; 32: 5549-5552
        • Schott B.H.
        • Minuzzi L.
        • Krebs R.M.
        • Elmenhorst D.
        • Lang M.
        • Winz O.H.
        • et al.
        Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release.
        J Neurosci. 2008; 28: 14311-14319
        • Baladi M.G.
        • Daws L.C.
        • France C.P.
        You are what you eat: Influence of type and amount of food consumed on central dopamine systems and the behavioral effects of direct- and indirect-acting dopamine receptor agonists.
        Neuropharmacology. 2012; 63: 76-86
        • Robinson T.E.
        • Berridge K.C.
        Review: The incentive sensitization theory of addiction: Some current issues.
        Philos Trans R Soc Lond B Biol Sci. 2008; 363: 3137-3146
        • Seeman P.
        • McCormick P.N.
        • Kapur S.
        Increased dopamine D2(High) receptors in amphetamine-sensitized rats, measured by the agonist [(3)H](+)PHNO.
        Synapse. 2007; 61: 263-267
        • Bailey A.
        • Metaxas A.
        • Yoo J.H.
        • McGee T.
        • Kitchen I.
        Decrease of D2 receptor binding but increase in D2-stimulated G-protein activation, dopamine transporter binding and behavioural sensitization in brains of mice treated with a chronic escalating dose 'binge' cocaine administration paradigm.
        Eur J Neurosci. 2008; 28: 759-770
        • Lee J.M.
        • DeLeon-Jones F.
        • Fields J.Z.
        • Ritzmann R.F.
        Cyclo (Leu-Gly) attenuates the striatal dopaminergic supersensitivity induced by chronic morphine.
        Alcohol Drug Res. 1987; 7: 1-10
        • Wilson A.A.
        • Garcia A.
        • Jin L.
        • Houle S.
        Radiotracer synthesis from [(11)C]-iodomethane: a remarkably simple captive solvent method.
        Nucl Med Biol. 2000; 27: 529-532
        • Wilson A.A.
        • McCormick P.
        • Kapur S.
        • Willeit M.
        • Garcia A.
        • Hussey D.
        • et al.
        Radiosynthesis and evaluation of [11C]-(+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol as a potential radiotracer for in vivo imaging of the dopamine D2 high-affinity state with positron emission tomography.
        J Med Chem. 2005; 48: 4153-4160
        • Graff-Guerrero A.
        • Redden L.
        • Abi-Saab W.
        • Katz D.A.
        • Houle S.
        • Barsoum P.
        • et al.
        Blockade of [11C](+)-PHNO binding in human subjects by the dopamine D3 receptor antagonist ABT-925.
        Int J Neuropsychopharmacol. 2010; 13: 273-287
        • Graff-Guerrero A.
        • Willeit M.
        • Ginovart N.
        • Mamo D.
        • Mizrahi R.
        • Rusjan P.
        • et al.
        Brain region binding of the D2/3 agonist [11C]-(+)-PHNO and the D2/3 antagonist [11C]raclopride in healthy humans.
        Hum Brain Mapp. 2008; 29: 400-410
        • Studholme C.
        • Hill D.L.
        • Hawkes D.J.
        Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures.
        Med Phys. 1997; 24: 25-35
        • Lammertsma A.A.
        • Hume S.P.
        Simplified reference tissue model for PET receptor studies.
        Neuroimage. 1996; 4: 153-158
        • Gunn R.N.
        • Lammertsma A.A.
        • Hume S.P.
        • Cunningham V.J.
        Parametric imaging of ligand-receptor binding in PET using a simplified reference region model.
        Neuroimage. 1997; 6: 279-287
        • Mawlawi O.
        • Martinez D.
        • Slifstein M.
        • Broft A.
        • Chatterjee R.
        • Hwang D.R.
        • et al.
        Imaging human mesolimbic dopamine transmission with positron emission tomography, I: Accuracy and precision of D(2) receptor parameter measurements in ventral striatum.
        J Cereb Blood Flow Metab. 2001; 21: 1034-1057
        • Mamo D.
        • Graff A.
        • Mizrahi R.
        • Shammi C.M.
        • Romeyer F.
        • Kapur S.
        Differential effects of aripiprazole on D(2), 5-HT(2), and 5-HT(1A) receptor occupancy in patients with schizophrenia: A triple tracer PET study.
        Am J Psychiatry. 2007; 164: 1411-1417
        • Graff-Guerrero A.
        • Mizrahi R.
        • Agid O.
        • Marcon H.
        • Barsoum P.
        • Rusjan P.
        • et al.
        The dopamine D2 receptors in high-affinity state and D3 receptors in schizophrenia: A clinical [11C]-(+)-PHNO PET study.
        Neuropsychopharmacology. 2009; 34: 1078-1086
        • Cohen J.
        A power primer.
        Psychol Bull. 1992; 112: 155-159
        • Rabiner E.A.
        • Laruelle M.
        Imaging the D3 receptor in humans in vivo using [11C](+)-PHNO positron emission tomography (PET).
        Int J Neuropsychopharmacol. 2010; 13: 289-290
        • Tziortzi A.C.
        • Searle G.E.
        • Tzimopoulou S.
        • Salinas C.
        • Beaver J.D.
        • Jenkinson M.
        • et al.
        Imaging dopamine receptors in humans with [11C]-(+)-PHNO: dissection of D3 signal and anatomy.
        Neuroimage. 2011; 54: 264-277
        • Davis C.
        • Fox J.
        Sensitivity to reward and body mass index (BMI): Evidence for a non-linear relationship.
        Appetite. 2008; 50: 43-49
        • Kiss B.
        • Horti F.
        • Bobok A.
        In vitro and in vivo comparison of [(3)H](+)-PHNO and [(3)H]raclopride binding to rat striatum and lobes 9 and 10 of the cerebellum: A method to distinguish dopamine D(3) from D(2) receptor sites.
        Synapse. 2011; 65: 467-478
        • Verbeken S.
        • Braet C.
        • Lammertyn J.
        • Goossens L.
        • Moens E.
        How is reward sensitivity related to bodyweight in children?.
        Appetite. 2012; 58: 478-483
        • Dodds C.M.
        • O'Neill B.
        • Beaver J.
        • Makwana A.
        • Bani M.
        • Merlo-Pich E.
        • et al.
        Effect of the dopamine D3 receptor antagonist GSK598809 on brain responses to rewarding food images in overweight and obese binge eaters.
        Appetite. 2012; 59: 27-33
        • Shotbolt P.
        • Tziortzi A.C.
        • Searle G.E.
        • Colasanti A.
        • van der Aart J.
        • Abanades S.
        • et al.
        Within-subject comparison of [(11)C]-(+)-PHNO and [(11)C]raclopride sensitivity to acute amphetamine challenge in healthy humans.
        J Cereb Blood Flow Metab. 2012; 32: 127-136
        • Willeit M.
        • Ginovart N.
        • Graff A.
        • Rusjan P.
        • Vitcu I.
        • Houle S.
        • et al.
        First human evidence of d-amphetamine induced displacement of a D2/3 agonist radioligand: A [11C]-(+)-PHNO positron emission tomography study.
        Neuropsychopharmacology. 2008; 33: 279-289
      1. Caravaggio F, Mamo D, Menon M, Borlido C, Gerretsen P, Wilson A, et al. (2012): Imaging D3 receptor occupancy by endogenous dopamine in humans: A [11C]-(+)-PHNO PET study. Poster presented at: Annual Meeting of Society for Neuroscience; October 12–17; New Orleans, Louisiana.

        • Egecioglu E.
        • Skibicka K.P.
        • Hansson C.
        • Alvarez-Crespo M.
        • Friberg P.A.
        • Jerlhag E.
        • et al.
        Hedonic and incentive signals for body weight control.
        Rev Endocr Metab Disord. 2011; 12: 141-151
        • Berridge K.C.
        Liking' and 'wanting' food rewards: Brain substrates and roles in eating disorders.
        Physiol Behav. 2009; 97: 537-550
        • Tonissaar M.
        • Herm L.
        • Rinken A.
        • Harro J.
        Individual differences in sucrose intake and preference in the rat: circadian variation and association with dopamine D2 receptor function in striatum and nucleus accumbens.
        Neurosci Lett. 2006; 403: 119-124
        • Phillips A.G.
        • Vacca G.
        • Ahn S.
        A top-down perspective on dopamine, motivation and memory.
        Pharmacol Biochem Behav. 2008; 90: 236-249
        • Weingarten H.P.
        Conditioned cues elicit feeding in sated rats: A role for learning in meal initiation.
        Science. 1983; 220: 431-433
        • Cornell C.E.
        • Rodin J.
        • Weingarten H.
        Stimulus-induced eating when satiated.
        Physiol Behav. 1989; 45: 695-704
        • Palmiter R.D.
        Is dopamine a physiologically relevant mediator of feeding behavior?.
        Trends Neurosci. 2007; 30: 375-381
        • Martinez D.
        • Greene K.
        • Broft A.
        • Kumar D.
        • Liu F.
        • Narendran R.
        • et al.
        Lower level of endogenous dopamine in patients with cocaine dependence: Findings from PET imaging of D(2)/D(3) receptors following acute dopamine depletion.
        Am J Psychiatry. 2009; 166: 1170-1177
        • Chen A.L.
        • Blum K.
        • Chen T.J.
        • Giordano J.
        • Downs B.W.
        • Han D.
        • et al.
        Correlation of the Taq1 dopamine D2 receptor gene and percent body fat in obese and screened control subjects: a preliminary report.
        Food Funct. 2012; 3: 40-48
        • Comings D.E.
        • Blum K.
        Reward deficiency syndrome: Genetic aspects of behavioral disorders.
        Prog Brain Res. 2000; 126: 325-341
        • Stice E.
        • Yokum S.
        • Burger K.S.
        • Epstein L.H.
        • Small D.M.
        Youth at risk for obesity show greater activation of striatal and somatosensory regions to food.
        J Neurosci. 2011; 31: 4360-4366
        • Nummenmaa L.
        • Hirvonen J.
        • Hannukainen J.C.
        • Immonen H.
        • Lindroos M.M.
        • Salminen P.
        • et al.
        Dorsal striatum and its limbic connectivity mediate abnormal anticipatory reward processing in obesity.
        PLoS One. 2012; 7: 3

      Linked Article

      • Erratum
        Biological PsychiatryVol. 77Issue 6
        • Preview
          Referencing errors have been detected in the article “Ventral Striatum Binding of a Dopamine D2/3 Receptor Agonist But Not Antagonist Predicts Normal Body Mass Index” by Caravaggio et al. (2015; 77:196–202). Detailed corrections are as follows:
        • Full-Text
        • PDF