Advertisement
Archival Report| Volume 73, ISSUE 11, P1087-1094, June 01, 2013

Download started.

Ok

Cellular Adaptations of Dorsal Raphe Serotonin Neurons Associated with the Development of Active Coping in Response to Social Stress

      Background

      Social stress is a risk factor for affective disorders for certain vulnerable individuals. Stress and depression are linked in part through regulation of the dorsal raphe (DR)-serotonin (5-HT) system by the stress-related neuropeptide, corticotropin-releasing factor (CRF). We used a rat social stress model that shows individual differences in coping strategies to determine whether differences in CRF-5-HT interactions underlie individual differences in the vulnerability to social stress.

      Methods

      Rats were exposed to the resident-intruder model of social stress for 5 days. In vivo single-unit recordings assessed DR-5-HT neuronal responses to CRF and immunoelectron microscopy assessed CRF1 and CRF2 cellular localization 24 hours after the last stress.

      Results

      Rats responded to social stress passively, assuming defeat with short latencies (48%), or actively, with proactive behaviors and longer defeat latencies (LL, 52%). Whereas CRF (30 ng, intra-DR) inhibited 5-HT neuronal activity of control and SL rats, it activated 5-HT neurons of LL rats, an effect that was CRF2-mediated. Consistent with this, social stress promoted CRF1 internalization together with CRF2 recruitment to the plasma membrane of DR neurons selectively in LL rats.

      Conclusions

      These data suggest that a proactive coping strategy toward social stress is associated with a redistribution of CRF1 and CRF2 in DR-5-HT neurons that primes the system to be activated by subsequent stress. The lack of this adaptation in passive coping rats may contribute to their depressive-like phenotype. These studies provide a cellular mechanism for individual differences in stress responses and consequences.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • McEwen B.S.
        Stress, adaptation, and disease: Allostasis and allostatic load.
        Ann N Y Acad Sci. 1998; 840: 33-44
        • de Kloet E.R.
        • Joels M.
        • Holsboer F.
        Stress and the brain: From adaptation to disease.
        Nat Rev Neurosci. 2005; 6: 463-475
        • Kendler K.S.
        • Karkowski L.M.
        • Prescott C.A.
        Causal relationship between stressful life events and the onset of major depression.
        Am J Psychiatry. 1999; 156: 837-841
        • Kendler K.S.
        • Kessler R.C.
        • Walters E.E.
        • MacLean C.
        • Neale M.C.
        • Heath A.C.
        • et al.
        Stressful life events, genetic liability, and onset of an episode of major depression in women.
        Am J Psychiatry. 1995; 152: 833-842
        • Marinelli M.
        • Piazza P.V.
        Interaction between glucocorticoid hormones, stress and psychostimulant drugs.
        Eur J Neurosci. 2002; 16: 387-394
        • Breese G.R.
        • Overstreet D.H.
        • Knapp D.J.
        Conceptual framework for the etiology of alcoholism: A "kindling"/stress hypothesis.
        Psychopharmacology (Berl). 2005; 178: 367-380
        • Dunn A.J.
        • Swiergiel A.H.
        Effects of acute and chronic stressors and CRF in rat and mouse tests for depression.
        Ann N Y Acad Sci. 2008; 1148: 118-126
        • Vale W.
        • Spiess J.
        • Rivier C.
        • Rivier J.
        Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin.
        Science. 1981; 213: 1394-1397
        • Holsboer F.
        • Ising M.
        Central CRH system in depression and anxiety: Evidence from clinical studies with CRH1 receptor antagonists.
        Eur J Pharmacol. 2008; 583: 350-357
        • Wood S.K.
        • Woods J.H.
        Corticotropin-releasing factor receptor-1: A therapeutic target for cardiac autonomic disturbances.
        Expert Opin Ther Targets. 2007; 11: 1401-1413
        • Ayala A.R.
        • Pushkas J.
        • Higley J.D.
        • Ronsaville D.
        • Gold P.W.
        • Chrousos G.P.
        • et al.
        Behavioral, adrenal, and sympathetic responses to long-term administration of an oral corticotropin-releasing hormone receptor antagonist in a primate stress paradigm.
        J Clin Endocrinol Metab. 2004; 89: 5729-5737
        • Austin M.C.
        • Janosky J.E.
        • Murphy H.A.
        Increased corticotropin-releasing hormone immunoreactivity in monoamine-containing pontine nuclei of depressed suicide men.
        Mol Psychiatry. 2003; 8: 324-332
        • Bissette G.
        • Klimek V.
        • Pan J.
        • Stockmeier C.
        • Ordway G.
        Elevated concentrations of CRF in the locus coeruleus of depressed subjects.
        Neuropsychopharmacology. 2003; 28: 1328-1335
        • Merali Z.
        • Du L.
        • Hrdina P.
        • Palkovits M.
        • Faludi G.
        • Poulter M.O.
        • et al.
        Dysregulation in the suicide brain: mRNA expression of corticotropin-releasing hormone receptors and GABA(A) receptor subunits in frontal cortical brain region.
        J Neurosci. 2004; 24: 1478-1485
        • Merali Z.
        • Kent P.
        • Du L.
        • Hrdina P.
        • Palkovits M.
        • Faludi G.
        • et al.
        Corticotropin-releasing hormone, arginine vasopressin, gastrin-releasing peptide, and neuromedin B alterations in stress-relevant brain regions of suicides and control subjects.
        Biol Psychiatry. 2006; 59: 594-602
        • Hauger R.L.
        • Risbrough V.
        • Brauns O.
        • Dautzenberg F.M.
        Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: new molecular targets.
        CNS Neurol Disord Drug Targets. 2006; 5: 453-479
        • Chalmers D.T.
        • Lovenberg T.W.
        • Grigoriadis D.E.
        • Behan D.P.
        • De Souza E.B.
        Corticotrophin-releasing factor receptors: from molecular biology to drug design.
        Trends Pharmacol Sci. 1996; 17: 166-172
        • Wood S.K.
        • McFadden K.V.
        • Grigoriadis D.
        • Bhatnagar S.
        • Valentino R.J.
        Depressive and cardiovascular disease comorbidity in a rat model of social stress: a putative role for corticotropin-releasing factor.
        Psychopharmacology (Berl). 2012; 222: 325-336
        • Heinrichs S.C.
        • Lapsansky J.
        • Lovenberg T.W.
        • De Souza E.B.
        • Chalmers D.T.
        Corticotropin-releasing factor CRF1, but not CRF2, receptors mediate anxiogenic-like behavior.
        Regul Pept. 1997; 71: 15-21
        • Ducottet C.
        • Griebel G.
        • Belzung C.
        Effects of the selective nonpeptide corticotropin-releasing factor receptor 1 antagonist antalarmin in the chronic mild stress model of depression in mice.
        Prog Neuropsychopharmacol Biol Psychiatry. 2003; 27: 625-631
        • Smith G.W.
        • Aubry J.M.
        • Dellu F.
        • Contarino A.
        • Bilezikjian L.M.
        • Gold L.H.
        • et al.
        Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development.
        Neuron. 1998; 20: 1093-1102
        • Valdez G.R.
        • Inoue K.
        • Koob G.F.
        • Rivier J.
        • Vale W.
        • Zorrilla E.P.
        Human urocortin II: Mild locomotor suppressive and delayed anxiolytic-like effects of a novel corticotropin-releasing factor related peptide.
        Brain Res. 2002; 943: 142-150
        • Tanaka M.
        • Telegdy G.
        Antidepressant-like effects of the CRF family peptides, urocortin 1, urocortin 2 and urocortin 3 in a modified forced swimming test in mice.
        Brain Res Bull. 2008; 75: 509-512
        • Bale T.L.
        • Contarino A.
        • Smith G.W.
        • Chan R.
        • Gold L.H.
        • Sawchenko P.E.
        • et al.
        Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress.
        Nat Genet. 2000; 24: 410-414
        • Kishimoto T.
        • Radulovic J.
        • Radulovic M.
        • Lin C.R.
        • Schrick C.
        • Hooshmand F.
        • et al.
        Deletion of crhr2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2.
        Nat Genet. 2000; 24: 415-419
        • Hammack S.E.
        • Schmid M.J.
        • LoPresti M.L.
        • Der-Avakian A.
        • Pellymounter M.A.
        • Foster A.C.
        • et al.
        Corticotropin releasing hormone type 2 receptors in the dorsal raphe nucleus mediate the behavioral consequences of uncontrollable stress.
        J Neurosci. 2003; 23: 1019-1025
        • Lukkes J.L.
        • Summers C.H.
        • Scholl J.L.
        • Renner K.J.
        • Forster G.L.
        Early life social isolation alters corticotropin-releasing factor responses in adult rats.
        Neuroscience. 2009; 158: 845-855
        • Maier S.F.
        • Watkins L.R.
        Stressor controllability and learned helplessness: The roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor.
        Neurosci Biobehav Rev. 2005; 29: 829-841
        • Valentino R.J.
        • Van Bockstaele E.
        Convergent regulation of locus coeruleus activity as an adaptive response to stress.
        Eur J Pharmacol. 2008; 583: 194-203
        • Valentino R.J.
        • Commons K.G.
        Peptides that fine-tune the serotonin system.
        Neuropeptides. 2005; 39: 1-8
        • Kirby L.G.
        • Rice K.C.
        • Valentino R.J.
        Effects of corticotropin-releasing factor on neuronal activity in the serotonergic dorsal raphe nucleus.
        Neuropsychopharmacology. 2000; 22: 148-162
        • Price M.L.
        • Curtis A.L.
        • Kirby L.G.
        • Valentino R.J.
        • Lucki I.
        Effects of corticotropin-releasing factor on brain serotonergic activity.
        Neuropsychopharmacology. 1998; 18: 492-502
        • Kirby L.G.
        • Freeman-Daniels E.
        • Lemos J.C.
        • Nunan J.D.
        • Lamy C.
        • Akanwa A.
        • et al.
        Corticotropin-releasing factor increases GABA synaptic activity and induces inward current in 5-hydroxytryptamine dorsal raphe neurons.
        J Neurosci. 2008; 28: 12927-12937
        • Roche M.
        • Commons K.G.
        • Peoples A.
        • Valentino R.J.
        Circuitry underlying regulation of the serotonergic system by swim stress.
        J Neurosci. 2003; 23: 970-977
        • Price M.L.
        • Lucki I.
        Regulation of serotonin release in the lateral septum and striatum by corticotropin-releasing factor.
        J Neurosci. 2001; 21: 2833-2841
        • Amat J.
        • Tamblyn J.P.
        • Paul E.D.
        • Bland S.T.
        • Amat P.
        • Foster A.C.
        • et al.
        Microinjection of urocortin 2 into the dorsal raphe nucleus activates serotonergic neurons and increases extracellular serotonin in the basolateral amygdala.
        Neuroscience. 2004; 129: 509-519
        • Lukkes J.L.
        • Forster G.L.
        • Renner K.J.
        • Summers C.H.
        Corticotropin-releasing factor 1 and 2 receptors in the dorsal raphe differentially affect serotonin release in the nucleus accumbens.
        Eur J Pharmacol. 2008; 578: 185-193
        • Forster G.L.
        • Pringle R.B.
        • Mouw N.J.
        • Vuong S.M.
        • Watt M.J.
        • Burke A.R.
        • et al.
        Corticotropin-releasing factor in the dorsal raphe nucleus increases medial prefrontal cortical serotonin via type 2 receptors and median raphe nucleus activity.
        Eur J Neurosci. 2008; 28: 299-310
        • Waselus M.
        • Nazzaro C.
        • Valentino R.J.
        • Van Bockstaele E.J.
        Stress-induced redistribution of corticotropin-releasing factor receptor subtypes in the dorsal raphe nucleus.
        Biol Psychiatry. 2009; 66: 76-83
        • Miczek K.A.
        A new test for aggression in rats without aversive stimulation: differential effects of d-amphetamine and cocaine.
        Psychopharmacology (Berl). 1979; 60: 253-259
        • Bjorkqvist K.
        Social defeat as a stressor in humans.
        Physiol Behav. 2001; 73: 435-442
        • Wood S.K.
        • Walker H.E.
        • Valentino R.J.
        • Bhatnagar S.
        Individual differences in reactivity to social stress predict susceptibility and resilience to a depressive phenotype: Role of corticotropin-releasing factor.
        Endocrinology. 2010; 151: 1795-1805
        • Pinault D.
        A novel single-cell staining procedure performed in vivo under electrophysiological control: Morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin.
        J Neurosci Methods. 1996; 65: 113-136
        • Pernar L.
        • Curtis A.L.
        • Vale W.W.
        • Rivier J.E.
        • Valentino R.J.
        Selective activation of corticotropin-releasing factor-2 receptors on neurochemically identified neurons in the rat dorsal raphe nucleus reveals dual actions.
        J Neurosci. 2004; 24: 1305-1311
        • Reyes B.A.
        • Valentino R.J.
        • Van Bockstaele E.J.
        Stress-induced intracellular trafficking of corticotropin-releasing factor receptors in rat locus coeruleus neurons.
        Endocrinology. 2008; 149: 122-130
        • Reyes B.A.
        • Fox K.
        • Valentino R.J.
        • Van Bockstaele E.J.
        Agonist-induced internalization of corticotropin-releasing factor receptors in noradrenergic neurons of the rat locus coeruleus.
        Eur J Neurosci. 2006; 23: 2991-2998
        • Paxinos G.
        • Watson C.
        The Rat Brain in Stereotaxic Coordinates. Elsevier Academic Press, London2005
        • Curtis A.L.
        • Bethea T.
        • Valentino R.J.
        Sexually dimorphic responses of the brain norepinephrine system to stress and corticotropin-releasing factor.
        Neuropsychopharmacology. 2006; 31: 544-554
        • Perrin M.
        • Donaldson C.
        • Chen R.
        • Blount A.
        • Berggren T.
        • Bilezikjian L.
        • et al.
        Identification of a second corticotropin-releasing factor receptor gene and characterization of a cDNA expressed in heart.
        Proc Natl Acad Sci U S A. 1995; 92: 2969-2973
        • Chen A.M.
        • Perrin M.H.
        • Digruccio M.R.
        • Vaughan J.M.
        • Brar B.K.
        • Arias C.M.
        • et al.
        A soluble mouse brain splice variant of type 2alpha corticotropin-releasing factor (CRF) receptor binds ligands and modulates their activity.
        Proc Natl Acad Sci U S A. 2005; 102: 2620-2625
        • Lovenberg T.W.
        • Chalmers D.T.
        • Liu C.
        • De Souza E.B.
        CRF2 alpha and CRF2 beta receptor mRNAs are differentially distributed between the rat central nervous system and peripheral tissues.
        Endocrinology. 1995; 136: 4139-4142
        • Cooper M.A.
        • Huhman K.L.
        Corticotropin-releasing factor receptors in the dorsal raphe nucleus modulate social behavior in Syrian hamsters.
        Psychopharmacology (Berl). 2007; 194: 297-307
        • Cooper M.A.
        • Huhman K.L.
        Blocking corticotropin-releasing factor-2 receptors, but not corticotropin-releasing factor-1 receptors or glucocorticoid feedback, disrupts the development of conditioned defeat.
        Physiol Behav. 2010; 101: 527-532
        • Price M.L.
        • Kirby L.G.
        • Valentino R.J.
        • Lucki I.
        Evidence for corticotropin-releasing factor regulation of serotonin in the lateral septum during acute swim stress: adaptation produced by repeated swimming.
        Psychopharmacology (Berl). 2002; 162: 406-414
        • Day H.E.
        • Greenwood B.N.
        • Hammack S.E.
        • Watkins L.R.
        • Fleshner M.
        • Maier S.F.
        • et al.
        Differential expression of 5HT-1A, alpha 1b adrenergic, CRF-R1, and CRF-R2 receptor mRNA in serotonergic, gamma-aminobutyric acidergic, and catecholaminergic cells of the rat dorsal raphe nucleus.
        J Comp Neurol. 2004; 474: 364-378
        • Valentino R.J.
        • Lucki I.
        • Van Bockstaele E.
        Corticotropin-releasing factor in the dorsal raphe nucleus: Linking stress coping and addiction.
        Brain Res. 2009; 1314: 29-37
        • Hammack S.E.
        • Pepin J.L.
        • DesMarteau J.S.
        • Watkins L.R.
        • Maier S.F.
        Low doses of corticotropin-releasing hormone injected into the dorsal raphe nucleus block the behavioral consequences of uncontrollable stress.
        Behav Brain Res. 2003; 147: 55-64
        • Paul E.D.
        • Hale M.W.
        • Lukkes J.L.
        • Valentine M.J.
        • Sarchet D.M.
        • Lowry C.A.
        Repeated social defeat increases reactive emotional coping behavior and alters functional responses in serotonergic neurons in the rat dorsal raphe nucleus.
        Physiol Behav. 2011; 104: 272-282
        • Billings A.G.
        • Moos R.H.
        Coping, stress, and social resources among adults with unipolar depression.
        J Pers Soc Psychol. 1984; 46: 877-891
        • Folkman S.
        • Lazarus R.S.
        An analysis of coping in a middle-aged community sample.
        J Health Soc Behav. 1980; 21: 219-239
        • Beekman M.
        • Flachskamm C.
        • Linthorst A.C.
        Effects of exposure to a predator on behaviour and serotonergic neurotransmission in different brain regions of C57bl/6N mice.
        Eur J Neurosci. 2005; 21: 2825-2836
        • Ebner K.
        • Singewald G.M.
        • Whittle N.
        • Ferraguti F.
        • Singewald N.
        Neurokinin 1 receptor antagonism promotes active stress coping via enhanced septal 5-HT transmission.
        Neuropsychopharmacology. 2008; 33: 1929-1941
      1. Bethea CL, Lima FB, Centeno ML, Weissheimer KV, Senashova O, Reddy AP, et al. (2011): Effects of citalopram on serotonin and CRF systems in the midbrain of primates with differences in stress sensitivity. J Chem Neuroanat 41:200-218.

        • Teli T.
        • Markovic D.
        • Levine M.A.
        • Hillhouse E.W.
        • Grammatopoulos D.K.
        Regulation of corticotropin-releasing hormone receptor type 1alpha signaling: Structural determinants for G protein-coupled receptor kinase-mediated phosphorylation and agonist-mediated desensitization.
        Mol Endocrinol. 2005; 19: 474-490
        • Oakley R.H.
        • Olivares-Reyes J.A.
        • Hudson C.C.
        • Flores-Vega F.
        • Dautzenberg F.M.
        • Hauger R.L.
        Carboxyl-terminal and intracellular loop sites for CRF1 receptor phosphorylation and beta-arrestin-2 recruitment: A mechanism regulating stress and anxiety responses.
        Am J Physiol Regul Integr Comp Physiol. 2007; 293: R209-222
        • Holmes K.D.
        • Babwah A.V.
        • Dale L.B.
        • Poulter M.O.
        • Ferguson S.S.
        Differential regulation of corticotropin releasing factor 1alpha receptor endocytosis and trafficking by beta-arrestins and Rab GTPases.
        J Neurochem. 2006; 96: 934-949
        • Evans R.T.
        • Seasholtz A.F.
        Soluble corticotropin-releasing hormone receptor 2alpha splice variant is efficiently translated but not trafficked for secretion.
        Endocrinology. 2009; 150: 4191-4202
        • Rutz C.
        • Renner A.
        • Alken M.
        • Schulz K.
        • Beyermann M.
        • Wiesner B.
        • et al.
        The corticotropin-releasing factor receptor type 2a contains an N-terminal pseudo signal peptide.
        J Biol Chem. 2006; 281: 24910-24921
        • Schulz K.
        • Rutz C.
        • Westendorf C.
        • Ridelis I.
        • Vogelbein S.
        • Furkert J.
        • et al.
        The pseudo signal peptide of the corticotropin-releasing factor receptor type 2a decreases receptor expression and prevents Gi-mediated inhibition of adenylyl cyclase activity.
        J Biol Chem. 2010; 285: 32878-32887