Advertisement

Repetitive Transcranial Magnetic Stimulation of the Dorsolateral Prefrontal Cortex Reduces Nicotine Cue Craving

Published:February 27, 2013DOI:https://doi.org/10.1016/j.biopsych.2013.01.003

      Background

      Repetitive transcranial magnetic stimulation (rTMS) can noninvasively stimulate the brain and transiently amplify or block behaviors mediated through a region. We hypothesized that a single high-frequency rTMS session over the left dorsolateral prefrontal cortex (DLPFC) would reduce cue craving for cigarettes compared with a sham TMS session.

      Methods

      Sixteen non-treatment-seeking, nicotine-dependent participants were randomized to receive either real high-frequency rTMS (10 Hz, 100% resting motor threshold, 5-sec on, 10-sec off for 15 min; 3000 pulses) or active sham (eSham) TMS over the DLPFC in two visits with 1 week between visits. The participants received cue exposure before and after rTMS and rated their craving after each block of cue presentation.

      Results

      Stimulation of the left DLFPC with real, but not sham, rTMS reduced craving significantly from baseline (64.1±5.9 vs. 45.7±6.4, t = 2.69, p = .018). When compared with neutral cue craving, the effect of real TMS on cue craving was significantly greater than the effect of sham TMS (12.5±10.4 vs. –9.1±10.4; t = 2.07, p = .049). More decreases in subjective craving induced by TMS correlated positively with higher Fagerström Test for Nicotine Dependence score (r = .58, p = .031) and more cigarettes smoked per day (r = .57, p = .035).

      Conclusions

      One session of high-frequency rTMS (10 Hz) of the left DLPFC significantly reduced subjective craving induced by smoking cues in nicotine-dependent participants. Additional studies are needed to explore rTMS as an aid to smoking cessation.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. World Health Organization (2011): WHO Report on the Global Tobacco Epidemic, 2011: Warning About the Dangers of Tobacco. Available at: http://www.who.int/tobacco/global_report/2011/en. Accessed September 9, 2012

      2. Centers for Disease Control and Prevention (2011): Quitting smoking among adults—United States, 2001–2010. MMWR Morb Mortal Wkly Rep 60:1513–1519.

        • Cahill K.
        • Stead L.F.
        • Lancaster T.
        Nicotine receptor partial agonists for smoking cessation.
        Cochrane Database Syst Rev Jan. 2007; 24: CD006103
        • Etter J.F.
        • Stapleton J.A.
        Nicotine replacement therapy for long-term smoking cessation: A meta-analysis.
        Tob Control. 2006; 15: 280-285
        • Swan G.E.
        • McAfee T.
        • Curry S.J.
        • Jack L.M.
        • Javitz H.
        • Dacey S.
        • et al.
        Effectiveness of bupropion sustained release for smoking cessation in a health care setting: A randomized trial.
        Arch Intern Med. 2003; 163: 2337-2344
        • National Insitute on Drug Abuse
        Tobacco addiction. NIDA, Bethesda, MD2006
      3. U.S. Services Department of Health and Human Services (2000): Reducing Tobacco Use: A Report of the Surgeon General. Atlanta, GA: Office on Smoking and Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention.

        • Di Chiara G.
        Role of dopamine in the behavioural actions of nicotine related to addiction.
        Eur J Pharmacol. 2000; 393: 295-314
        • Epping-Jordan M.P.
        • Watkins S.S.
        • Koob G.F.
        • Markou A.
        Dramatic decreases in brain reward function during nicotine withdrawal.
        Nature. 1998; 393: 76-79
        • Brody A.L.
        • Mandelkern M.A.
        • London E.D.
        • Childress A.R.
        • Lee G.S.
        • Bota R.G.
        • et al.
        Brain metabolic changes during cigarette craving.
        Arch Gen Psychiatry. 2002; 59: 1162-1172
        • McBride D.
        • Barrett S.P.
        • Kelly J.T.
        • Aw A.
        • Dagher A.
        Effects of expectancy and abstinence on the neural response to smoking cues in cigarette smokers: An fMRI study.
        Neuropsychopharmacology. 2006; 31: 2728-2738
        • Garavan H.
        • Pankiewicz J.
        • Bloom A.
        • Cho J.K.
        • Sperry L.
        • Ross T.J.
        • et al.
        Cue-induced cocaine craving: Neuroanatomical specificity for drug users and drug stimuli.
        Am J Psychiatry. 2000; 157: 1789-1798
        • George M.S.
        • Anton R.F.
        • Bloomer C.
        • Teneback C.
        • Drobes D.J.
        • Lorberbaum J.P.
        • et al.
        Activation of prefrontal cortex and anterior thalamus in alcoholic subjects on exposure to alcohol-specific cues.
        Arch Gen Psychiatry. 2001; 58: 345-352
        • Myrick H.
        • Anton R.F.
        • Li X.
        • Henderson S.
        • Drobes D.
        • Voronin K.
        • et al.
        Differential brain activity in alcoholics and social drinkers to alcohol cues: Relationship to craving.
        Neuropsychopharmacology. 2004; 29: 393-402
        • Barker A.T.
        • Jalinous R.
        • Freeston I.L.
        Non-invasive magnetic stimulation of human motor cortex.
        Lancet. 1985; 1: 1106-1107
        • George M.S.
        • Nahas Z.
        • Kozol F.A.
        • Li X.
        • Yamanaka K.
        • Mishory A.
        • et al.
        Mechanisms and the current state of transcranial magnetic stimulation.
        CNS Spectr. 2003; 8: 496-514
        • Strafella A.P.
        • Paus T.
        • Barrett J.
        • Dagher A.
        Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus.
        J Neurosci. 2001; 21: RC157
        • Diana M.
        • Spiga S.
        • Acquas E.
        Persistent and reversible morphine withdrawal-induced morphological changes in the nucleus accumbens.
        Ann N Y Acad Sci. 2006; 1074: 446-457
        • Blum K.
        • Chen A.L.
        • Chen T.J.
        • Braverman E.R.
        • Reinking J.
        • Blum S.H.
        • et al.
        Activation instead of blocking mesolimbic dopaminergic reward circuitry is a preferred modality in the long term treatment of reward deficiency syndrome (RDS): A commentary.
        Theor Biol Med Model. 2008; 5: 24
        • Li X.
        • Nahas Z.
        • Kozel F.A.
        • Anderson B.
        • Bohning D.E.
        • George M.S.
        Acute left prefrontal transcranial magnetic stimulation in depressed patients is associated with immediately increased activity in prefrontal cortical as well as subcortical regions.
        Biol Psychiatry. 2004; 55: 882-890
        • Nahas Z.
        • Kozel F.A.
        • Li X.
        • Anderson B.
        • George M.S.
        Left prefrontal transcranial magnetic stimulation (TMS) treatment of depression in bipolar affective disorder: A pilot study of acute safety and efficacy.
        Bipolar Disord. 2003; 5: 40-47
        • Amiaz R.
        • Levy D.
        • Vainiger D.
        • Grunhaus L.
        • Zangen A.
        Repeated high-frequency transcranial magnetic stimulation over the dorsolateral prefrontal cortex reduces cigarette craving and consumption.
        Addiction. 2009; 104: 653-660
        • Eichhammer P.
        • Johann M.
        • Kharraz A.
        • Binder H.
        • Pittrow D.
        • Wodarz N.
        • et al.
        High-frequency repetitive transcranial magnetic stimulation decreases cigarette smoking.
        J Clin Psychiatry. 2003; 64: 951-953
        • Rose J.E.
        • McClernon F.J.
        • Froeliger B.
        • Behm F.M.
        • Preud’homme X.
        • Krystal A.D.
        Repetitive transcranial magnetic stimulation of the superior frontal gyrus modulates craving for cigarettes.
        Biol Psychiatry. 2011; 70: 794-799
        • Fagerstrom K.O.
        Measuring degree of physical dependence to tobacco smoking with reference to individualization of treatment.
        Addict Behav. 1978; 3: 235-241
        • Heatherton T.F.
        • Kozlowski L.T.
        • Frecker R.C.
        • Fagerstrom K.O.
        The Fagerstrom Test for Nicotine Dependence: A revision of the Fagerstrom Tolerance Questionnaire.
        Br J Addict. 1991; 86: 1119-1127
        • Cox L.S.
        • Tiffany S.T.
        • Christen A.G.
        Evaluation of the Brief Questionnaire of Smoking Urges (QSU-Brief) in laboratory and clinical settings.
        Nicotine Tob Res. 2001; 3: 7-16
        • Hughes J.R.
        Effects of abstinence from tobacco: Valid symptoms and time course.
        Nicotine Tob Res. 2007; 9: 315-327
        • Sheehan D.V.
        • Lecrubier Y.
        • Sheehan K.H.
        • Amorim P.
        • Janavs J.
        • Weiller E.
        • et al.
        The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10.
        J Clin Psychiatry 59. 1998; (quiz 34–57): 22-33
        • Hartwell K.J.
        • Johnson K.A.
        • Li X.
        • Myrick H.
        • LeMatty T.
        • George M.S.
        • et al.
        Neural correlates of craving and resisting craving for tobacco in nicotine dependent smokers.
        Addict Biol. 2011; 16: 654-666
      4. Li X, Hartwell KJ, Borckardt J, Prisciandaro JJ, Saladin ME, Morgan PS, et al. (2012): Volitional reduction of anterior cingulate cortex activity produces decreased cue craving in smoking cessation: A preliminary real-time fMRI study [published online ahead of print March 28]. Addict Biol.

        • Geier A.
        • Mucha R.F.
        • Pauli P.
        Appetitive nature of drug cues confirmed with physiological measures in a model using pictures of smoking.
        Psychopharmacology (Berl). 2000; 150: 283-291
        • Ziemann U.
        • Hallett M.
        Basic neurophysiological studies with TMS.
        in: George M. Belmaker R. Transcranial Magnetic Stimulation In Neuropsychiatry. American Psychiatric Press, Washington, DC2000: 45
        • George M.S.
        • Post R.M.
        Daily left prefrontal repetitive transcranial magnetic stimulation for acute treatment of medication-resistant depression.
        Am J Psychiatry. 2011; 168: 356-364
        • Herbsman T.
        • Avery D.
        • Ramsey D.
        • Holtzheimer P.
        • Wadjik C.
        • Hardaway F.
        • et al.
        More lateral and anterior prefrontal coil location is associated with better repetitive transcranial magnetic stimulation antidepressant response.
        Biol Psychiatry. 2009; 66: 509-515
        • Anderson B.S.
        • Kavanagh K.
        • Borckardt J.J.
        • Nahas Z.H.
        • Kose S.
        • Lisanby S.H.
        • et al.
        Decreasing procedural pain over time of left prefrontal rTMS for depression: Initial results from the open-label phase of a multi-site trial (OPT-TMS).
        Brain Stimul. 2009; 2: 88-92
        • Borckardt J.J.
        • Walker J.
        • Branham R.K.
        • Rydin-Gray S.
        • Hunter C.
        • Beeson H.
        • et al.
        Development and evaluation of a portable sham transcranial magnetic stimulation system.
        Brain Stimul. 2008; 1: 52-59
        • Gershon A.A.
        • Dannon P.N.
        • Grunhaus L.
        Transcranial magnetic stimulation in the treatment of depression.
        Am J Psychiatry. 2003; 160: 835-845
        • Jorge R.E.
        • Moser D.J.
        • Acion L.
        • Robinson R.G.
        Treatment of vascular depression using repetitive transcranial magnetic stimulation.
        Arch Gen Psychiatry. 2008; 65: 268-276
        • Herwig U.
        • Padberg F.
        • Unger J.
        • Spitzer M.
        • Schonfeldt-Lecuona C.
        Transcranial magnetic stimulation in therapy studies: Examination of the reliability of “standard” coil positioning by neuronavigation.
        Biol Psychiatry. 2001; 50: 58-61
        • Pogarell O.
        • Koch W.
        • Popperl G.
        • Tatsch K.
        • Jakob F.
        • Mulert C.
        • et al.
        Acute prefrontal rTMS increases striatal dopamine to a similar degree as D-amphetamine.
        Psychiatry Res. 2007; 156: 251-255
        • Malin D.H.
        • Lake J.R.
        • Smith T.D.
        • Khambati H.N.
        • Meyers-Paal R.L.
        • Montellano A.L.
        • et al.
        Bupropion attenuates nicotine abstinence syndrome in the rat.
        Psychopharmacology (Berl). 2006; 184: 494-503
        • Mathieu-Kia A.M.
        • Kellogg S.H.
        • Butelman E.R.
        • Kreek M.J.
        Nicotine addiction: Insights from recent animal studies.
        Psychopharmacology (Berl). 2002; 162: 102-118
        • Rose J.E.
        Nicotine and nonnicotine factors in cigarette addiction.
        Psychopharmacology (Berl). 2006; 184: 274-285
        • Pogarell O.
        • Koch W.
        • Popperl G.
        • Tatsch K.
        • Jakob F.
        • Zwanzger P.
        • et al.
        Striatal dopamine release after prefrontal repetitive transcranial magnetic stimulation in major depression: Preliminary results of a dynamic [123I] IBZM SPECT study.
        J Psychiatr Res. 2006; 40: 307-314
        • Berardelli A.
        • Inghilleri M.
        • Rothwell J.C.
        • Romeo S.
        • Curra A.
        • Gilio F.
        • et al.
        Facilitation of muscle evoked responses after repetitive cortical stimulation in man.
        Exp Brain Res. 1998; 122: 79-84
        • Cooke S.F.
        • Bliss T.V.
        Plasticity in the human central nervous system.
        Brain. 2006; 129: 1659-1673
        • Daskalakis Z.J.
        • George T.P.
        Clozapine, GABA(B), and the treatment of resistant schizophrenia.
        Clin Pharmacol Ther. 2009; 86: 442-446
        • Daskalakis Z.J.
        • Moller B.
        • Christensen B.K.
        • Fitzgerald P.B.
        • Gunraj C.
        • Chen R.
        The effects of repetitive transcranial magnetic stimulation on cortical inhibition in healthy human subjects.
        Exp Brain Res. 2006; 174: 403-412
        • Wing V.C.
        • Bacher I.
        • Wu B.S.
        • Daskalakis Z.J.
        • George T.P.
        High frequency repetitive transcranial magnetic stimulation reduces tobacco craving in schizophrenia.
        Schizophr Res. 2012; 139: 264-266
        • Bohning D.E.
        • Shastri A.
        • McConnell K.A.
        • Nahas Z.
        • Lorberbaum J.P.
        • Roberts D.R.
        • et al.
        A combined TMS/fMRI study of intensity-dependent TMS over motor cortex.
        Biol Psychiatry. 1999; 45: 385-394
        • Li X.
        • Large C.H.
        • Ricci R.
        • Taylor J.J.
        • Nahas Z.
        • Bohning D.E.
        • et al.
        Using interleaved transcranial magnetic stimulation/functional magnetic resonance imaging (fMRI) and dynamic causal modeling to understand the discrete circuit specific changes of medications: Lamotrigine and valproic acid changes in motor or prefrontal effective connectivity.
        Psychiatry Res. 2011; 194: 141-148
        • Fecteau S.
        • Fregni F.
        • Boggio P.S.
        • Camprodon J.A.
        • Pascual-Leone A.
        Neuromodulation of decision-making in the addictive brain.
        Subst Use Misuse. 2010; 45: 1766-1786
        • Feil J.
        • Zangen A.
        Brain stimulation in the study and treatment of addiction.
        Neurosci Biobehav Rev. 2010; 34: 559-574
        • De Ridder D.
        • Vanneste S.
        • Kovacs S.
        • Sunaert S.
        • Dom G.
        Transient alcohol craving suppression by rTMS of dorsal anterior cingulate: an fMRI and LORETA EEG study.
        Neurosci Lett. 2011; 496: 5-10
        • Perkins K.
        • Sayette M.
        • Conklin C.
        • Caggiula A.
        Placebo effects of tobacco smoking and other nicotine intake.
        Nicotine Tob Res. 2003; 5: 695-709
        • Monso E.
        • Campbell J.
        • Tonnesen P.
        • Gustavsson G.
        • Morera J.
        Sociodemographic predictors of success in smoking intervention.
        Tob Control. 2001; 10: 165-169
        • Osler M.
        • Prescott E.
        Psychosocial, behavioural, and health determinants of successful smoking cessation: A longitudinal study of Danish adults.
        Tob Control. 1998; 7: 262-267
      5. Farkas AJ, Pierce JP, Zhu SH, Rosbrook B, Gilpin EA, Berry C, et al. (1996): Addiction versus stages of change models in predicting smoking cessation. Addiction 91:1271–1280; discussion 1281–1292.

        • Kozlowski L.T.
        • Porter C.Q.
        • Orleans C.T.
        • Pope M.A.
        • Heatherton T.
        Predicting smoking cessation with self-reported measures of nicotine dependence: FTQ, FTND, and HSI.
        Drug Alcohol Depend. 1994; 34: 211-216
        • Etter J.F.
        A comparison of the content-, construct- and predictive validity of the cigarette dependence scale and the Fagerstrom test for nicotine dependence.
        Drug Alcohol Depend. 2005; 77: 259-268
        • Moolchan E.T.
        • Radzius A.
        • Epstein D.H.
        • Uhl G.
        • Gorelick D.A.
        • Cadet J.L.
        • et al.
        The Fagerstrom Test for Nicotine Dependence and the Diagnostic Interview Schedule: Do they diagnose the same smokers?.
        Addict Behav. 2002; 27: 101-113
        • Anderson B.
        • Mishory A.
        • Nahas Z.
        • Borckardt J.J.
        • Yamanaka K.
        • Rastogi K.
        • et al.
        Tolerability and safety of high daily doses of repetitive transcranial magnetic stimulation in healthy young men.
        J ECT. 2006; 22: 49-53
        • Donny E.C.
        • Griffin K.M.
        • Shiffman S.
        • Sayette M.A.
        The relationship between cigarette use, nicotine dependence, and craving in laboratory volunteers.
        Nicotine Tob Res. 2008; 10: 447-455
        • Watson N.L.
        • Carpenter M.J.
        • Saladin M.E.
        • Gray K.M.
        • Upadhyaya H.P.
        Evidence for greater cue reactivity among low-dependent vs. high-dependent smokers.
        Addict Behav. 2010; 35: 673-677
        • George M.S.
        Transcranial magnetic stimulation for the treatment of depression.
        Expert Rev Neurother. 2010; 10: 1761-1772
        • George M.S.
        • Lisanby S.H.
        • Avery D.
        • McDonald W.M.
        • Durkalski V.
        • Pavlicova M.
        • et al.
        Daily left prefrontal transcranial magnetic stimulation therapy for major depressive disorder: a sham-controlled randomized trial.
        Arch Gen Psychiatry. 2010; 67: 507-516
        • George M.S.
        • Nahas Z.
        • Molloy M.
        • Speer A.M.
        • Oliver N.C.
        • Li X.B.
        • et al.
        A controlled trial of daily left prefrontal cortex TMS for treating depression.
        Biol Psychiatry. 2000; 48: 962-970

      Linked Article

      • How to Assess the Role of Transcranial Magnetic Stimulation in Nicotine Addiction
        Biological PsychiatryVol. 73Issue 8
        • Preview
          Substance use disorders (SUD) in general and nicotine dependence in particular account for significant mortality, morbidity, and socioeconomic burdens. This is a global issue that affects various societies as established by numerous health organizations including the World Health Organization, the Centers for Disease Control, and the National Institute on Drug Abuse. Researchers now believe that whereas positive reward from nicotine initiates smoking, it is mainly the relief from withdrawal symptoms and negative affect associated with it that contribute to the persistence of smoking and relapse (1).
        • Full-Text
        • PDF