Advertisement
Archival Report| Volume 73, ISSUE 10, P967-975, May 15, 2013

Anomalous Use of Context During Task Preparation in Schizophrenia: A Magnetoencephalography Study

Published:February 04, 2013DOI:https://doi.org/10.1016/j.biopsych.2012.12.018

      Background

      Impaired ability to use contextual information to optimally prepare for tasks contributes to performance deficits in schizophrenia. We used magnetoencephalography and an antisaccade task to investigate the neural basis of this deficit.

      Methods

      In schizophrenia patients and healthy control participants, we examined the difference in preparatory activation to cues indicating an impending antisaccade or prosaccade. We analyzed activation for correct trials only and focused on the network for volitional ocular motor control—frontal eye field (FEF), dorsal anterior cingulate cortex (dACC), and the ventrolateral and dorsolateral prefrontal cortex (VLPFC, DLPFC).

      Results

      Compared with control subjects, patients made more antisaccade errors and showed reduced differential preparatory activation in the dACC and increased differential preparatory activation in the VLPFC. In patients only, antisaccade error rates correlated with preparatory activation in the FEF, DLPFC, and VLPFC.

      Conclusions

      In schizophrenia, reduced differential preparatory activation of the dACC may reflect reduced signaling of the need for control. Greater preparatory activation in the VLPFC and the correlations of error rate with FEF, DLPFC, and VLPFC activation may reflect that patients who are more error prone require stronger activation in these regions for correct performance. These findings provide the first evidence of abnormal task preparation, distinct from response generation, during volitional saccades in schizophrenia. We conclude that schizophrenia patients are impaired in using task cues to modulate cognitive control and that this contributes to deficits inhibiting prepotent but contextually inappropriate responses and to behavior that is stimulus bound and error prone rather than flexibly guided by context.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fornito A.
        • Yoon J.
        • Zalesky A.
        • Bullmore E.T.
        • Carter C.S.
        General and specific functional connectivity disturbances in first-episode schizophrenia during cognitive control performance.
        Biol Psychiatry. 2011; 70: 64-72
        • Barch D.M.
        • Carter C.S.
        • Braver T.S.
        • Sabb F.W.
        • MacDonald 3rd, A.
        • Noll D.C.
        • Cohen J.D.
        Selective deficits in prefrontal cortex function in medication-naive patients with schizophrenia.
        Arch Gen Psychiatry. 2001; 58: 280-288
        • Hallett P.E.
        Primary and secondary saccades to goals defined by instructions.
        Vision Res. 1978; 18: 1279-1296
        • Levy D.L.
        • Mendell N.R.
        • LaVancher C.A.
        • Brownstein J.
        • Krastoshevsky O.
        • Teraspulsky L.
        • et al.
        Disinhibition in antisaccade performance in schizophrenia.
        in: Lenzenweger M.F. Dworkin R.H. Origins and Development of Schizophrenia. American Psychological Association, Washington DC1998: 185-210
        • Gooding D.C.
        • Basso M.A.
        The tell-tale tasks: A review of saccadic research in psychiatric patient populations.
        Brain Cogn. 2008; 68: 371-390
        • McDowell J.E.
        • Myles-Worsley M.
        • Coon H.
        • Byerley W.
        • Clementz B.A.
        Measuring liability for schizophrenia using optimized antisaccade stimulus parameters.
        Psychophysiology. 1999; 36: 138-141
        • Munoz D.P.
        • Everling S.
        Look away: The anti-saccade task and the voluntary control of eye movement.
        Nat Rev Neurosci. 2004; 5: 218-228
        • Everling S.
        • Munoz D.P.
        Neuronal correlates for preparatory set associated with pro-saccades and anti-saccades in the primate frontal eye field.
        J Neurosci. 2000; 20: 387-400
        • Connolly J.D.
        • Goodale M.A.
        • Goltz H.C.
        • Munoz D.P.
        fMRI activation in the human frontal eye field is correlated with saccadic reaction time.
        J Neurophysiol. 2005; 94: 605-611
        • Johnston K.
        • Levin H.M.
        • Koval M.J.
        • Everling S.
        Top-down control-signal dynamics in anterior cingulate and prefrontal cortex neurons following task switching.
        Neuron. 2007; 53: 453-462
        • Miller E.K.
        • Cohen J.D.
        An integrative theory of prefrontal cortex function.
        Annu Rev Neurosci. 2001; 24: 167-202
        • Wang Y.
        • Matsuzaka Y.
        • Shima K.
        • Tanji J.
        Cingulate cortical cells projecting to monkey frontal eye field and primary motor cortex.
        Neuroreport. 2004; 15: 1559-1563
        • Selemon L.D.
        • Goldman-Rakic P.S.
        Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: Evidence for a distributed neural network subserving spatially guided behavior.
        J Neurosci. 1988; 8: 4049-4068
        • Tu P.
        • Buckner R.L.
        • Zollei L.
        • Dyckman K.A.
        • Manoach D.S.
        Reduced functional connectivity in a right-hemisphere network for volitional ocular motor control in schizophrenia.
        Brain. 2010; 133: 625-637
        • Margulies D.S.
        • Kelly A.M.
        • Uddin L.Q.
        • Biswal B.B.
        • Castellanos F.X.
        • Milham M.P.
        Mapping the functional connectivity of anterior cingulate cortex.
        Neuroimage. 2007; 37: 579-588
        • Koski L.
        • Paus T.
        Functional connectivity of the anterior cingulate cortex within the human frontal lobe: A brain-mapping meta-analysis.
        Exp Brain Res. 2000; 133: 55-65
        • McDowell J.E.
        • Dyckman K.A.
        • Austin B.P.
        • Clementz B.A.
        Neurophysiology and neuroanatomy of reflexive and volitional saccades: Evidence from studies of humans.
        Brain Cogn. 2008; 68: 255-270
        • Dyckman K.A.
        • Camchong J.
        • Clementz B.A.
        • McDowell J.E.
        An effect of context on saccade-related behavior and brain activity.
        Neuroimage. 2007; 36: 774-784
        • Matsuda T.
        • Matsuura M.
        • Ohkubo T.
        • Ohkubo H.
        • Matsushima E.
        • Inoue K.
        • et al.
        Functional MRI mapping of brain activation during visually guided saccades and antisaccades: Cortical and subcortical networks.
        Psychiatry Res. 2004; 131: 147-155
        • Milea D.
        • Lehericy S.
        • Rivaud-Pechoux S.
        • Duffau H.
        • Lobel E.
        • Capelle L.
        • et al.
        Antisaccade deficit after anterior cingulate cortex resection.
        Neuroreport. 2003; 14: 283-287
        • Pierrot-Deseilligny C.
        • Muri R.M.
        • Ploner C.J.
        • Gaymard B.
        • Demeret S.
        • Rivaud-Pechoux S.
        Decisional role of the dorsolateral prefrontal cortex in ocular motor behaviour.
        Brain. 2003; 126: 1460-1473
        • Hodgson T.
        • Chamberlain M.
        • Parris B.
        • James M.
        • Gutowski N.
        • Husain M.
        • Kennard C.
        The role of the ventrolateral frontal cortex in inhibitory oculomotor control.
        Brain. 2007; 130: 1525-1537
        • Camchong J.
        • Dyckman K.A.
        • Austin B.P.
        • Clementz B.A.
        • McDowell J.E.
        Common neural circuitry supporting volitional saccades and its disruption in schizophrenia patients and relatives.
        Biol Psychiatry. 2008; 64: 1042-1050
        • Nakashima Y.
        • Momose T.
        • Sano I.
        • Katayama S.
        • Nakajima T.
        • Niwa S.
        • Matsushita M.
        Cortical control of saccade in normal and schizophrenic subjects: A PET study using a task-evoked rCBF paradigm.
        Schizophr Res. 1994; 12: 259-264
        • McDowell J.E.
        • Brown G.G.
        • Paulus M.
        • Martinez A.
        • Stewart S.E.
        • Dubowitz D.J.
        • Braff D.L.
        Neural correlates of refixation saccades and antisaccades in normal and schizophrenia subjects.
        Biol Psychiatry. 2002; 51: 216-223
        • Raemaekers M.
        • Jansma J.M.
        • Cahn W.
        • Van der Geest J.N.
        • van der Linden J.A.
        • Kahn R.S.
        • Ramsey N.F.
        Neuronal substrate of the saccadic inhibition deficit in schizophrenia investigated with 3-dimensional event-related functional magnetic resonance imaging.
        Arch Gen Psychiatry. 2002; 59: 313-320
        • Tu P.C.
        • Yang T.H.
        • Kuo W.J.
        • Hsieh J.C.
        • Su T.P.
        Neural correlates of antisaccade deficits in schizophrenia, an fMRI study.
        J Psychiatr Res. 2006; 40: 606-612
        • Dyckman K.A.
        • Lee A.K.
        • Agam Y.
        • Vangel M.
        • Goff D.C.
        • Barton J.J.
        • Manoach D.S.
        Abnormally persistent fMRI activation during antisaccades in schizophrenia: A neural correlate of perseveration?.
        Schizophr Res. 2011; 132: 62-68
        • Crawford T.J.
        • Puri B.K.
        • Nijran K.S.
        • Jones B.
        • Kennard C.
        • Lewis S.W.
        Abnormal saccadic distractibility in patients with schizophrenia: A 99mTc-HMPAO SPET study.
        Psychol Med. 1996; 26: 265-277
        • Raemaekers M.
        • Ramsey N.F.
        • Vink M.
        • van den Heuvel M.P.
        • Kahn R.S.
        Brain activation during antisaccades in unaffected relatives of schizophrenic patients.
        Biol Psychiatry. 2006; 59: 530-535
        • Klein C.
        • Heinks T.
        • Andresen B.
        • Berg P.
        • Moritz S.
        Impaired modulation of the saccadic contingent negative variation preceding antisaccades in schizophrenia.
        Biol Psychiatry. 2000; 47: 978-990
        • Reuter B.
        • Herzog E.
        • Endrass T.
        • Kathmann N.
        Brain potentials indicate poor preparation for action in schizophrenia.
        Psychophysiology. 2006; 43: 604-611
        • First M.B.
        • Spitzer R.L.
        • Gibbon M.
        • Williams J.B.W.
        Structured Clinical Interview for DSM-IV Axis I Disorders, Research Version, Patient Edition with Psychotic Screen (SCID-I/P W/PSY SCREEN).
        Biometrics Research, New York State Psychiatric Institute, New York1997
        • Kay S.R.
        • Fiszbein A.
        • Opler L.A.
        The positive and negative syndrome scale (PANSS) for schizophrenia.
        Schizophr Bull. 1987; 13: 261-276
        • Andreasen N.C.
        Scale for the Assessment of Negative Symptoms (SANS).
        University of Iowa, Iowa City1983
        • Overall J.E.
        • Gorham D.R.
        The Brief Psychiatric Rating Scale.
        Psychol Rep. 1962; 10: 799-812
        • First M.B.
        • Spitzer R.L.
        • Gibbon M.
        • Williams J.B.W.
        Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Nonpatient Edition.
        Biometrics Research, New York State Psychiatric Institute, New York2002
        • Oldfield R.C.
        The assessment and analysis of handedness: The Edinburgh Inventory.
        Neuropsychologia. 1971; 9: 97-113
        • White K.
        • Ashton R.
        Handedness assessment inventory.
        Neuropsychologia. 1976; 14: 261-264
        • Lee A.K.C.
        • Hämäläinen M.S.
        • Dyckman K.A.
        • Barton J.J.S.
        • Manoach D.S.
        Saccadic preparation in frontal eye field is modulated by distinct trial history effects as revealed by magnetoencephalography.
        Cereb Cortex. 2011; 21: 245-253
        • Taulu S.
        • Simola J.
        • Kajola M.
        Applications of the signal space separation method.
        IEEE Trans Signal Process. 2005; 53: 3359-3372
        • Medvedovsky M.
        • Taulu S.
        • Bikmullina R.
        • Ahonen A.
        • Paetau R.
        Fine tuning the correlation limit of spatio-temporal signal space separation for magnetoencephalography.
        J Neurosci Methods. 2009; 177: 203-211
        • Hämäläinen M.S.
        • Sarvas J.
        Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data.
        IEEE Trans Biomed Eng. 1989; 36: 165-171
        • Hämäläinen M.S.
        • Ilmoniemi R.
        Interpreting measured magnetic fields of the brain: Estimates of current distribution.
        University of Technology, Department of Technical Physics Report, TKK-F-A559, Helsinki1984
        • Dale A.M.
        • Sereno M.I.
        Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach.
        J Cogn Neuorsci. 1993; 5: 162-176
        • Dale A.M.
        • Liu A.K.
        • Fischl B.R.
        • Buckner R.L.
        • Belliveau J.W.
        • Lewine J.D.
        • Halgren E.
        Dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution imaging of cortical activity.
        Neuron. 2000; 26: 55-67
        • Lin F.H.
        • Belliveau J.W.
        • Dale A.M.
        • Hämäläinen M.S.
        Distributed current estimates using cortical orientation constraints.
        Hum Brain Mapp. 2006; 27: 1-13
        • Fischl B.
        • Sereno M.I.
        • Tootell R.B.H.
        • Dale A.M.
        High-resolution intersubject averaging and a coordinate system for the cortical surface.
        Hum Brain Mapp. 1999; 8: 272-284
        • Fischl B.
        • van der Kouwe A.
        • Destrieux C.
        • Halgren E.
        • Segonne F.
        • Salat D.H.
        • et al.
        Automatically parcellating the human cerebral cortex.
        Cereb Cortex. 2004; 14: 11-22
        • Moon S.Y.
        • Barton J.J.S.
        • Mikulski S.
        • Polli F.E.
        • Cain M.S.
        • Vangel M.
        • et al.
        Where left becomes right: A magnetoencephalographic study of sensorimotor transformation for antisaccades.
        Neuroimage. 2007; 36: 1313-1323
        • Paus T.
        Location and function of the human frontal eye-field: A selective review.
        Neuropsychologia. 1996; 34: 475-483
        • Koyama M.
        • Hasegawa I.
        • Osada T.
        • Adachi Y.
        • Nakahara K.
        • Miyashita Y.
        Functional magnetic resonance imaging of macaque monkeys performing visually guided saccade tasks: Comparison of cortical eye fields with humans.
        Neuron. 2004; 41: 795-807
        • Luna B.
        • Thulborn K.R.
        • Strojwas M.H.
        • McCurtain B.J.
        • Berman R.A.
        • Genovese C.R.
        • Sweeney J.A.
        Dorsal cortical regions subserving visually guided saccades in humans: An fMRI study.
        Cereb Cortex. 1998; 8: 40-47
        • Simo L.S.
        • Krisky C.M.
        • Sweeney J.A.
        Functional neuroanatomy of anticipatory behavior: Dissociation between sensory-driven and memory-driven systems.
        Cereb Cortex. 2005; 15: 1982-1991
        • Devinsky O.
        • Morrell M.J.
        • Vogt B.A.
        Contributions of anterior cingulate cortex to behaviour.
        Brain. 1995; 118: 279-306
        • Lee A.K.
        • Hamalainen M.S.
        • Dyckman K.A.
        • Barton J.J.
        • Manoach D.S.
        Saccadic preparation in the frontal eye field is modulated by distinct trial history effects as revealed by magnetoencephalography.
        Cereb Cortex. 2011; 21: 245-253
        • Efron B.
        • Tibshirani R.J.
        An Introduction to the Bootstrap.
        Chapman and Hall, New York1993
        • Braver T.S.
        • Barch D.M.
        Extracting core components of cognitive control.
        Trends Cogn Sci. 2006; 10: 529-532
        • Dosenbach N.U.
        • Visscher K.M.
        • Palmer E.D.
        • Miezin F.M.
        • Wenger K.K.
        • Kang H.C.
        • et al.
        A core system for the implementation of task sets.
        Neuron. 2006; 50: 799-812
        • Pierrot-Deseilligny C.
        • Muri R.M.
        • Ploner C.J.
        • Gaymard B.
        • Rivaud-Pechoux S.
        Cortical control of ocular saccades in humans: A model for motricity.
        Prog Brain Res. 2003; 142: 3-17
        • Kerns J.G.
        • Cohen J.D.
        • MacDonald 3rd, A.W.
        • Cho R.Y.
        • Stenger V.A.
        • Carter C.S.
        Anterior cingulate conflict monitoring and adjustments in control.
        Science. 2004; 303: 1023-1026
        • Leung H.C.
        • Cai W.
        Common and differential ventrolateral prefrontal activity during inhibition of hand and eye movements.
        J Neurosci. 2007; 27: 9893-9900
        • Minzenberg M.J.
        • Laird A.R.
        • Thelen S.
        • Carter C.S.
        • Glahn D.C.
        Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia.
        Arch Gen Psychiatry. 2009; 66: 811-822
        • Dias E.C.
        • Segraves M.A.
        Muscimol-induced inactivation of monkey frontal eye field: Effects on visually and memory-guided saccades.
        J Neurophysiol. 1999; 81: 2191-2214
        • Schiller P.H.
        • Tehovnik E.J.
        Cortical inhibitory circuits in eye-movement generation.
        Eur J Neurosci. 2003; 18: 3127-3133
        • Reuter B.
        • Jager M.
        • Bottlender R.
        • Kathmann N.
        Impaired action control in schizophrenia: The role of volitional saccade initiation.
        Neuropsychologia. 2007; 45: 1840-1848
        • Barton J.J.
        • Cherkasova M.V.
        • Lindgren K.A.
        • Goff D.C.
        • Manoach D.S.
        What is perseverated in schizophrenia? Evidence of abnormal response plasticity in the saccadic system.
        J Abnorm Psychol. 2005; 114: 75-84
        • Barton J.J.
        • Goff D.C.
        • Manoach D.S.
        The inter-trial effects of stimulus and saccadic direction on prosaccades and antisaccades, in controls and schizophrenia patients.
        Exp Brain Res. 2006; 174: 487-498
        • Manoach D.S.
        • Press D.Z.
        • Thangaraj V.
        • Searl M.M.
        • Goff D.C.
        • Halpern E.
        • et al.
        Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task as measured by fMRI.
        Biol Psychiatry. 1999; 45: 1128-1137
        • Manoach D.S.
        Prefrontal cortex dysfunction during working memory performance in schizophrenia: Reconciling discrepant findings.
        Schizophr Res. 2003; 60: 285-298
        • Callicott J.H.
        • Mattay V.S.
        • Verchinski B.A.
        • Marenco S.
        • Egan M.F.
        • Weinberger D.R.
        Complexity of prefrontal cortical dysfunction in schizophrenia: More than up or down.
        Am J Psychiatry. 2003; 160: 2209-2215