Default Mode Network in Childhood Autism: Posteromedial Cortex Heterogeneity and Relationship with Social Deficits

  • Charles J. Lynch
    Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
    Search for articles by this author
  • Lucina Q. Uddin
    Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
    Search for articles by this author
  • Kaustubh Supekar
    Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
    Search for articles by this author
  • Amirah Khouzam
    Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
    Search for articles by this author
  • Jennifer Phillips
    Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
    Search for articles by this author
  • Vinod Menon
    Address correspondence to Vinod Menon, Ph.D., 401 Quarry Road, Department of Psychiatry & Behavioral Sciences, Stanford, CA 94304-5719
    Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California

    Program in Neuroscience, Stanford University School of Medicine, Stanford, California

    Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California

    Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford University School of Medicine, Stanford, California
    Search for articles by this author
Published:February 04, 2013DOI:


      The default mode network (DMN), a brain system anchored in the posteromedial cortex, has been identified as underconnected in adults with autism spectrum disorder (ASD). However, to date there have been no attempts to characterize this network and its involvement in mediating social deficits in children with ASD. Furthermore, the functionally heterogeneous profile of the posteromedial cortex raises questions regarding how altered connectivity manifests in specific functional modules within this brain region in children with ASD.


      Resting-state functional magnetic resonance imaging and an anatomically informed approach were used to investigate the functional connectivity of the DMN in 20 children with ASD and 19 age-, gender-, and IQ-matched typically developing (TD) children. Multivariate regression analyses were used to test whether altered patterns of connectivity are predictive of social impairment severity.


      Compared with TD children, children with ASD demonstrated hyperconnectivity of the posterior cingulate and retrosplenial cortices with predominately medial and anterolateral temporal cortex. In contrast, the precuneus in ASD children demonstrated hypoconnectivity with visual cortex, basal ganglia, and locally within the posteromedial cortex. Aberrant posterior cingulate cortex hyperconnectivity was linked with severity of social impairments in ASD, whereas precuneus hypoconnectivity was unrelated to social deficits. Consistent with previous work in healthy adults, a functionally heterogeneous profile of connectivity within the posteromedial cortex in both TD and ASD children was observed.


      This work links hyperconnectivity of DMN-related circuits to the core social deficits in young children with ASD and highlights fundamental aspects of posteromedial cortex heterogeneity.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Baio J.
        Prevalence of autism spectrum disorders—autism and developmental disabilities monitoring network, 14 sites, United States, 2008.
        MMWR Surveill Summ. 2012; 61: 1-19
        • Lombardo M.V.
        • Barnes J.L.
        • Wheelwright S.J.
        • Baron-Cohen S.
        Self-referential cognition and empathy in autism.
        PLoS ONE. 2007; 2: e883
        • Uddin L.Q.
        The self in autism: An emerging view from neuroimaging.
        Neurocase. 2011; 17: 201-208
        • Greicius M.D.
        • Krasnow B.
        • Reiss A.L.
        • Menon V.
        Functional connectivity in the resting brain: A network analysis of the default mode hypothesis.
        Proc Natl Acad Sci U S A. 2003; 100: 253-258
        • Raichle M.E.
        • MacLeod A.M.
        • Snyder A.Z.
        • Powers W.J.
        • Gusnard D.A.
        • Shulman G.L.
        A default mode of brain function.
        Proc Natl Acad Sci U S A. 2001; 98: 676-682
        • Amodio D.M.
        • Frith C.D.
        Meeting of minds: The medial frontal cortex and social cognition.
        Nat Rev Neurosci. 2006; 7: 268-277
        • Spreng R.N.
        • Mar R.A.
        • Kim A.S.
        The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis.
        J Cogn Neurosci. 2009; 21: 489-510
        • Buckner R.L.
        • Carroll D.C.
        Self-projection and the brain.
        Trends Cogn Sci. 2007; 11: 49-57
        • Schilbach L.
        • Eickhoff S.B.
        • Rotarska-Jagiela A.
        • Fink G.R.
        • Vogeley K.
        Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain.
        Conscious Cogn. 2008; 17: 457-467
        • Mars RB
        • Neubert FX
        • Noonan MP
        • Sallet J
        • Toni I
        • Rushworth MF
        On the relationship between the “default mode network” and the “social brain.”.
        Front Hum Neurosci. 2012; 6: 189
        • Buckner R.L.
        • Andrews-Hanna J.R.
        • Schacter D.L.
        The brain’s default network: Anatomy, function, and relevance to disease.
        Ann N Y Acad Sci. 2008; 1124: 1-38
        • Menon V.
        Large-scale brain networks and psychopathology: A unifying triple network model.
        Trends Cogn Sci. 2011; 15: 483-506
        • Uddin L.Q.
        • Iacoboni M.
        • Lange C.
        • Keenan J.P.
        The self and social cognition: The role of cortical midline structures and mirror neurons.
        Trends Cogn Sci. 2007; 11: 153-157
        • Assaf M.
        • Jagannathan K.
        • Calhoun V.D.
        • Miller L.
        • Stevens M.C.
        • Sahl R.
        • et al.
        Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients.
        Neuroimage. 2010; 53: 247-256
        • Cherkassky V.L.
        • Kana R.K.
        • Keller T.A.
        • Just M.A.
        Functional connectivity in a baseline resting-state network in autism.
        Neuroreport. 2006; 17: 1687-1690
        • Kennedy D.P.
        • Redcay E.
        • Courchesne E.
        Failing to deactivate: Resting functional abnormalities in autism.
        Proc Natl Acad Sci U S A. 2006; 103: 8275-8280
        • Monk C.S.
        • Peltier S.J.
        • Wiggins J.L.
        • Weng S.J.
        • Carrasco M.
        • Risi S.
        • et al.
        Abnormalities of intrinsic functional connectivity in autism spectrum disorders.
        Neuroimage. 2009; 47: 764-772
        • Weng S.J.
        • Wiggins J.L.
        • Peltier S.J.
        • Carrasco M.
        • Risi S.
        • Lord C.
        • et al.
        Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders.
        Brain Res. 2010; 1313: 202-214
        • Rudie J.D.
        • Hernandez L.M.
        • Brown J.A.
        • Beck-Pancer D.
        • Colich N.L.
        • Gorrindo P.
        • et al.
        Autism-associated promoter variant in MET impacts functional and structural brain networks.
        Neuron. 2012; 75: 904-915
      1. Uddin LQ, Supekar K, Lynch CJ, Khouzam A, Phillips J, Menon V (in press): Salience network based classification and prediction of symptom severity in children with autism. JAMA Psychiatry.

      2. Supekar K, Uddin LQ, Khouzam A, Phillips J, Gaillard WD, Kentworthy L, et al. (2012): Widespread brain hyper-connectivity in children with autism. Presented at the 18th Annual Meeting of the Organization for Human Brain Mapping, June 14, Beijing, China.

        • Gordon E.M.
        • Lee P.S.
        • Maisog J.M.
        • Foss-Feig J.
        • Billington M.E.
        • Vanmeter J.
        • et al.
        Strength of default mode resting-state connectivity relates to white matter integrity in children.
        Dev Sci. 2011; 14: 738-751
        • Supekar K.
        • Uddin L.Q.
        • Prater K.
        • Amin H.
        • Greicius M.D.
        • Menon V.
        Development of functional and structural connectivity within the default mode network in young children.
        Neuroimage. 2010; 52: 290-301
        • Fair D.A.
        • Cohen A.L.
        • Dosenbach N.U.
        • Church J.A.
        • Miezin F.M.
        • Barch D.M.
        • et al.
        The maturing architecture of the brain’s default network.
        Proc Natl Acad Sci U S A. 2008; 105: 4028-4032
        • Margulies D.S.
        • Vincent J.L.
        • Kelly C.
        • Lohmann G.
        • Uddin L.Q.
        • Biswal B.B.
        • et al.
        Precuneus shares intrinsic functional architecture in humans and monkeys.
        Proc Natl Acad Sci U S A. 2009; 106: 20069-20074
        • Parvizi J.
        • Van Hoesen G.W.
        • Buckwalter J.
        • Damasio A.
        Neural connections of the posteromedial cortex in the macaque.
        Proc Natl Acad Sci U S A. 2006; 103: 1563-1568
        • Leichnetz G.R.
        Connections of the medial posterior parietal cortex (area 7m) in the monkey.
        Anat Rec. 2001; 263: 215-236
        • Morecraft R.J.
        • Cipolloni P.B.
        • Stilwell-Morecraft K.S.
        • Gedney M.T.
        • Pandya D.N.
        Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey.
        J Comp Neurol. 2004; 469: 37-69
        • Vogt B.A.
        • Vogt L.
        • Laureys S.
        Cytology and functionally correlated circuits of human posterior cingulate areas.
        Neuroimage. 2006; 29: 452-466
        • Kennedy D.P.
        • Courchesne E.
        The intrinsic functional organization of the brain is altered in autism.
        Neuroimage. 2008; 39: 1877-1885
        • Fox M.D.
        • Snyder A.Z.
        • Vincent J.L.
        • Corbetta M.
        • Van Essen D.C.
        • Raichle M.E.
        The human brain is intrinsically organized into dynamic, anticorrelated functional networks.
        Proc Natl Acad Sci U S A. 2005; 102: 9673-9678
        • Shulman G.L.
        • Fiez J.A.
        • Corbetta M.
        • Buckner R.L.
        • M. MF
        • Raichle M.E.
        • et al.
        Common blood flow changes across visual tasks: II. Decreases in cerebral cortex.
        J Cogn Neurosci. 1997; 9: 648-663
        • Leech R.
        • Braga R.
        • Sharp D.J.
        Echoes of the brain within the posterior cingulate cortex.
        J Neurosci. 2012; 32: 215-222
        • Zhang S.
        • Li C.S.
        Functional connectivity mapping of the human precuneus by resting state fMRI.
        Neuroimage. 2011; 59: 3548-3562
      3. Lord C, Rutter M, Le Couteur A (1994): Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 24:659–685.

      4. Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, et al. (2000): The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 30:205–223.

        • Glover G.H.
        • Lai S.
        Self-navigated spiral fMRI: Interleaved versus single-shot.
        Magn Reson Med. 1998; 39: 361-368
        • Tibshirani R.J.
        Univariate shrinkage in the cox model for high dimensional data.
        Stat Appl Genet Mol Biol. 2009; 8: 21
        • Uddin L.Q.
        • Supekar K.
        • Menon V.
        Typical and atypical development of functional human brain networks: Insights from resting-state FMRI.
        Front Syst Neurosci. 2010; 4: 21
        • Just M.A.
        • Keller T.A.
        • Malave V.L.
        • Kana R.K.
        • Varma S.
        Autism as a neural systems disorder: A theory of frontal-posterior underconnectivity.
        Neurosci Biobehav Rev. 2012; 36: 1292-1313
        • Vissers M.E.
        • Cohen M.X.
        • Geurts H.M.
        Brain connectivity and high functioning autism: A promising path of research that needs refined models, methodological convergence, and stronger behavioral links.
        Neurosci Biobehav Rev. 2011; 36: 604-625
        • Andrews-Hanna J.R.
        • Reidler J.S.
        • Sepulcre J.
        • Poulin R.
        • Buckner R.L.
        Functional-anatomic fractionation of the brain’s default network.
        Neuron. 2010; 65: 550-562
        • Muller R.A.
        • Shih P.
        • Keehn B.
        • Deyoe J.R.
        • Leyden K.M.
        • Shukla D.K.
        Underconnected, but how? A survey of functional connectivity MRI studies in autism spectrum disorders.
        Cereb Cortex. 2011; 21: 2233-2243
        • Oblak A.L.
        • Rosene D.L.
        • Kemper T.L.
        • Bauman M.L.
        • Blatt G.J.
        Altered posterior cingulate cortical cyctoarchitecture, but normal density of neurons and interneurons in the posterior cingulate cortex and fusiform gyrus in autism.
        Autism Res. 2011; 4: 200-211
        • Olson I.R.
        • Plotzker A.
        • Ezzyat Y.
        The Enigmatic temporal pole: A review of findings on social and emotional processing.
        Brain. 2007; 130: 1718-1731
        • Saleem K.S.
        • Kondo H.
        • Price J.L.
        Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey.
        J Comp Neurol. 2008; 506: 659-693
        • Spreng R.N.
        • Grady C.L.
        Patterns of brain activity supporting autobiographical memory, prospection, and theory-of-mind and their relationship to the default mode network.
        J Cogn Neurosci. 2010; 22: 1112-1123
        • Spreng R.N.
        • Mar R.A.
        I remember you: A role for memory in social cognition and the functional neuroanatomy of their interaction.
        Brain Res. 2012; 1428: 43-50
        • Lenroot R.K.
        • Giedd J.N.
        Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging.
        Neurosci Biobehav Rev. 2006; 30: 718-729
        • Sanchez C.E.
        • Richards J.E.
        • Almli C.R.
        Neurodevelopmental MRI brain templates for children from 2 weeks to 4 years of age.
        Dev Psychobiol. 2012; 54: 77-91
      5. Devlin JT, Poldrack RA (2007): In praise of tedious anatomy. Neuroimage 37:1033–1041; discussion 1050–1058.