Advertisement

Allopregnanolone Elevations Following Pregnenolone Administration Are Associated with Enhanced Activation of Emotion Regulation Neurocircuits

      Background

      The neurosteroid allopregnanolone is a potent allosteric modulator of the gamma-aminobutyric acid type A receptor with anxiolytic properties. Exogenous administration of allopregnanolone reduces anxiety, and allopregnanolone blockade impairs social and affective functioning. However, the neural mechanism whereby allopregnanolone improves mood and reduces anxiety is unknown. In particular, brain imaging has not been used to link neurosteroid effects to emotion regulation neurocircuitry.

      Methods

      To investigate the brain basis of allopregnanolone’s impact on emotion regulation, participants were administered 400 mg of pregnenolone (n=16) or placebo (n=15) and underwent 3T functional magnetic resonance imaging while performing the shifted-attention emotion appraisal task, which probes emotional processing and regulation.

      Results

      Compared with placebo, allopregnanolone was associated with reduced activity in the amygdala and insula across all conditions. During the appraisal condition, allopregnanolone increased activity in the dorsal medial prefrontal cortex and enhanced connectivity between the amygdala and dorsal medial prefrontal cortex, an effect that was associated with reduced self-reported anxiety.

      Conclusions

      These results demonstrate that in response to emotional stimuli, allopregnanolone reduces activity in regions associated with generation of negative emotion. Furthermore, allopregnanolone may enhance activity in regions linked to regulatory processes. Aberrant activity in these regions has been linked to anxiety psychopathology. These results thus provide initial neuroimaging evidence that allopregnanolone may be a target for pharmacologic intervention in the treatment of anxiety disorders and suggest potential future directions for research into neurosteroid effects on emotion regulation neurocircuitry.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Girdler S.S.
        • Klatzkin R.
        Neurosteroids in the context of stress: Implications for depressive disorders.
        Pharmacol Ther. 2007; 116: 125-139
        • Belelli D.
        • Lambert J.J.
        Neurosteroids: Endogenous regulators of the GABA(A) receptor.
        Nat Rev Neurosci. 2005; 6: 565-575
        • Majewska M.D.
        • Harrison N.L.
        • Schwartz R.D.
        • Barker J.L.
        • Paul S.M.
        Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor.
        Science. 1986; 232: 1004-1007
        • Calogero A.E.
        • Palumbo M.A.
        • Bosboom A.M.
        • Burrello N.
        • Ferrara E.
        • Palumbo G.
        • et al.
        The neuroactive steroid allopregnanolone suppresses hypothalamic gonadotropin-releasing hormone release through a mechanism mediated by the gamma-aminobutyric acidA receptor.
        J Endocrinol. 1998; 158: 121-125
        • Purdy R.H.
        • Morrow A.L.
        • Moore Jr, P.H.
        • Paul S.M.
        Stress-induced elevations of gamma-aminobutyric acid type A receptor-active steroids in the rat brain.
        Proc Natl Acad Sci U S A. 1991; 88: 4553-4557
        • Pinna G.
        • Rasmusson A.M.
        Up-regulation of neurosteroid biosynthesis as a pharmacological strategy to improve behavioural deficits in a putative mouse model of post-traumatic stress disorder.
        J Neuroendocrinol. 2011; 24: 102-116
        • Frye C.A.
        • Paris J.J.
        Progesterone turnover to its 5α-reduced metabolites in the ventral tegmental area of the midbrain is essential for initiating social and affective behavior and progesterone metabolism in female rats.
        J Endocrinol Invest. 2011; 34: e188-e199
        • Koonce C.J.
        • Walf A.A.
        • Frye C.A.
        Type 1 5α-reductase may be required for estrous cycle changes in affective behaviors of female mice.
        Behav Brain Res. 2012; 226: 376-380
        • Frye C.A.
        • Paris J.J.
        • Walf A.A.
        • Rusconi J.C.
        Effects and mechanisms of 3α,5α,-THP on emotion, motivation, and reward functions involving pregnane xenobiotic receptor.
        Front Neurosci. 2011; 5: 136
        • Harrison N.L.
        • Simmonds M.A.
        Modulation of the GABA receptor complex by a steroid anaesthetic.
        Brain Res. 1984; 323: 287-292
        • Lambert J.J.
        • Belelli D.
        • Peden D.R.
        • Vardy A.W.
        • Peters J.A.
        Neurosteroid modulation of GABAA receptors.
        Prog Neurobiol. 2003; 71: 67-80
        • Martin-Garcia E.
        • Pallares M.
        Intrahippocampal nicotine and neurosteroids effects on the anxiety-like behaviour in voluntary and chronic alcohol-drinking rats.
        Behav Brain Res. 2005; 164: 117-127
        • Frye C.A.
        • Rhodes M.E.
        Infusions of 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP) to the ventral tegmental area, but not the substantia nigra, enhance exploratory, anti-anxiety, social and sexual behaviours and concomitantly increase 3alpha,5alpha-THP concentrations in the hippocampus, diencephalon and cortex of ovariectomised oestrogen-primed rats.
        J Neuroendocrinol. 2006; 18: 960-975
        • Darbra S.
        • Pallares M.
        Alterations in neonatal neurosteroids affect exploration during adolescence and prepulse inhibition in adulthood.
        Psychoneuroendocrinology. 2010; 35: 525-535
        • Darbra S.
        • Pallares M.
        Effects of early postnatal allopregnanolone administration on elevated plus maze anxiety scores in adult male Wistar rats.
        Neuropsychobiology. 2012; 65: 20-27
        • Pibiri F.
        • Nelson M.
        • Guidotti A.
        • Costa E.
        • Pinna G.
        Decreased corticolimbic allopregnanolone expression during social isolation enhances contextual fear: A model relevant for posttraumatic stress disorder.
        Proc Natl Acad Sci U S A. 2008; 105: 5567-5572
        • Amin Z.
        • Mason G.F.
        • Cavus I.
        • Krystal J.H.
        • Rothman D.L.
        • Epperson C.N.
        The interaction of neuroactive steroids and GABA in the development of neuropsychiatric disorders in women.
        Pharmacol Biochem Behav. 2006; 84: 635-643
        • van Broekhoven F.
        • Verkes R.J.
        Neurosteroids in depression: A review.
        Psychopharmacology (Berl). 2003; 165: 97-110
        • Uzunova V.
        • Sheline Y.
        • Davis J.M.
        • Rasmusson A.
        • Uzunov D.P.
        • Costa E.
        • Guidotti A.
        Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine.
        Proc Natl Acad Sci U S A. 1998; 95: 3239-3244
        • Rasmusson A.M.
        • Pinna G.
        • Paliwal P.
        • Weisman D.
        • Gottschalk C.
        • Charney D.
        • et al.
        Decreased cerebrospinal fluid allopregnanolone levels in women with posttraumatic stress disorder.
        Biol Psychiatry. 2006; 60: 704-713
        • Strohle A.
        • Romeo E.
        • Hermann B.
        • Pasini A.
        • Spalletta G.
        • di Michele F.
        • et al.
        Concentrations of 3 alpha-reduced neuroactive steroids and their precursors in plasma of patients with major depression and after clinical recovery.
        Biol Psychiatry. 1999; 45: 274-277
        • Marx C.E.
        • Shampine L.J.
        • Khisti R.T.
        • Trost W.T.
        • Bradford D.W.
        • Grobin A.C.
        • et al.
        Olanzapine and fluoxetine administration and coadministration increase rat hippocampal pregnenolone, allopregnanolone and peripheral deoxycorticosterone: Implications for therapeutic actions.
        Pharmacol Biochem Behav. 2006; 84: 609-617
        • Matsumoto K.
        • Puia G.
        • Dong E.
        • Pinna G.
        GABA(A) receptor neurotransmission dysfunction in a mouse model of social isolation-induced stress: Possible insights into a non-serotonergic mechanism of action of SSRIs in mood and anxiety disorders.
        Stress. 2007; 10: 3-12
        • Uzunov D.P.
        • Cooper T.B.
        • Costa E.
        • Guidotti A.
        Fluoxetine-elicited changes in brain neurosteroid content measured by negative ion mass fragmentography.
        Proc Natl Acad Sci U S A. 1996; 93: 12599-12604
        • Romeo E.
        • Strohle A.
        • Spalletta G.
        • di Michele F.
        • Hermann B.
        • Holsboer F.
        • et al.
        Effects of antidepressant treatment on neuroactive steroids in major depression.
        Am J Psychiatry. 1998; 155: 910-913
        • Pinna G.
        • Costa E.
        • Guidotti A.
        SSRIs act as selective brain steroidogenic stimulants (SBSSs) at low doses that are inactive on 5-HT reuptake.
        Curr Opin Pharmacol. 2009; 9: 24-30
        • Pinna G.
        • Costa E.
        • Guidotti A.
        Fluoxetine and norfluoxetine stereospecifically and selectively increase brain neurosteroid content at doses that are inactive on 5-HT reuptake.
        Psychopharmacology (Berl). 2006; 186: 362-372
        • Pirker S.
        • Schwarzer C.
        • Wieselthaler A.
        • Sieghart W.
        • Sperk G.
        GABA(A) receptors: Immunocytochemical distribution of 13 subunits in the adult rat brain.
        Neuroscience. 2000; 101: 815-850
        • Akwa Y.
        • Purdy R.H.
        • Koob G.F.
        • Britton K.T.
        The amygdala mediates the anxiolytic-like effect of the neurosteroid allopregnanolone in rat.
        Behav Brain Res. 1999; 106: 119-125
        • Engin E.
        • Treit D.
        The anxiolytic-like effects of allopregnanolone vary as a function of intracerebral microinfusion site: The amygdala, medial prefrontal cortex, or hippocampus.
        Behav Pharmacol. 2007; 18: 461-470
        • Shirayama Y.
        • Muneoka K.
        • Fukumoto M.
        • Tadokoro S.
        • Fukami G.
        • Hashimoto K.
        • Iyo M.
        Infusions of allopregnanolone into the hippocampus and amygdala, but not into the nucleus accumbens and medial prefrontal cortex, produce antidepressant effects on the learned helplessness rats.
        Hippocampus. 2011; 21: 1105-1113
        • Nelson M.
        • Pinna G.
        S-norfluoxetine microinfused into the basolateral amygdala increases allopregnanolone levels and reduces aggression in socially isolated mice.
        Neuropharmacology. 2011; 60: 1154-1159
        • van Wingen G.
        • van Broekhoven F.
        • Verkes R.J.
        • Petersson K.M.
        • Backstrom T.
        • Buitelaar J.
        • Fernández G.
        How progesterone impairs memory for biologically salient stimuli in healthy young women.
        J Neurosci. 2007; 27: 11416-11423
        • van Wingen G.A.
        • van Broekhoven F.
        • Verkes R.J.
        • Petersson K.M.
        • Backstrom T.
        • Buitelaar J.K.
        • Fernández G.
        Progesterone selectively increases amygdala reactivity in women.
        Mol Psychiatry. 2008; 13: 325-333
        • Price J.L.
        • Drevets W.C.
        Neurocircuitry of mood disorders.
        Neuropsychopharmacology. 2010; 35: 192-216
        • Phan K.L.
        • Wager T.
        • Taylor S.F.
        • Liberzon I.
        Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI.
        Neuroimage. 2002; 16: 331-348
        • Dillon D.G.
        • Deveney C.M.
        • Pizzagalli D.A.
        From basic processes to real-world problems: How research on emotion and emotion regulation can inform understanding of psychopathology, and vice versa.
        Emot Rev. 2011; 3: 74-82
        • Amstadter A.
        Emotion regulation and anxiety disorders.
        J Anxiety Disord. 2008; 22: 211-221
        • Klumpp H.
        • Ho S.S.
        • Taylor S.F.
        • Phan K.L.
        • Abelson J.L.
        • Liberzon I.
        Trait anxiety modulates anterior cingulate activation to threat interference.
        Depress Anxiety. 2011; 28: 194-201
        • Ossewaarde L.
        • Hermans E.J.
        • van Wingen G.A.
        • Kooijman S.C.
        • Johansson I.M.
        • Backstrom T.
        • Fernández G.
        Neural mechanisms underlying changes in stress-sensitivity across the menstrual cycle.
        Psychoneuroendocrinology. 2010; 35: 47-55
        • Sheehan D.V.
        • Lecrubier Y.
        • Sheehan K.H.
        • Amorim P.
        • Janavs J.
        • Weiller E.
        • et al.
        The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10.
        J Clin Psychiatry 59. 1998; (quiz 34–57): 22-33
        • Marx C.E.
        • Keefe R.S.
        • Buchanan R.W.
        • Hamer R.M.
        • Kilts J.D.
        • Bradford D.W.
        • et al.
        Proof-of-concept trial with the neurosteroid pregnenolone targeting cognitive and negative symptoms in schizophrenia.
        Neuropsychopharmacology. 2009; 34: 1885-1903
        • Marx C.E.
        • Bradford D.W.
        • Hamer R.M.
        • Naylor J.C.
        • Allen T.B.
        • Lieberman J.A.
        • et al.
        Pregnenolone as a novel therapeutic candidate in schizophrenia: Emerging preclinical and clinical evidence.
        Neuroscience. 2011; 191: 78-90
        • Marx C.E.
        • Shampine L.J.
        • Duncan G.E.
        • VanDoren M.J.
        • Grobin A.C.
        • Massing M.W.
        • et al.
        Clozapine markedly elevates pregnenolone in rat hippocampus, cerebral cortex, and serum: Candidate mechanism for superior efficacy?.
        Pharmacol Biochem Behav. 2006; 84: 598-608
        • Marx C.E.
        • Trost W.T.
        • Shampine L.
        • Behm F.M.
        • Giordano L.A.
        • Massing M.W.
        • Rose J.E.
        Neuroactive steroids, negative affect, and nicotine dependence severity in male smokers.
        Psychopharmacology (Berl). 2006; 186: 462-472
        • Marx C.E.
        • Trost W.T.
        • Shampine L.J.
        • Stevens R.D.
        • Hulette C.M.
        • Steffens D.C.
        • et al.
        The neurosteroid allopregnanolone is reduced in prefrontal cortex in Alzheimer's disease.
        Biol Psychiatry. 2006; 60: 1287-1294
        • Anderson A.K.
        • Christoff K.
        • Panitz D.
        • De Rosa E.
        • Gabrieli J.D.
        Neural correlates of the automatic processing of threat facial signals.
        J Neurosci. 2003; 23: 5627-5633
        • Ward B.
        Simultaneous inference for fMRI data. 2000; (Available at: http://afni.nimh.nih.gov/pub/dist/doc/manual/AlphaSim.pdf)
        • Talairach J.
        • Tournoux P.
        Co-Planar Stereotaxic Atlas of the Human Brain. Thieme, New York1988
        • Adolphs R.
        • Tranel D.
        • Hamann S.
        • Young A.W.
        • Calder A.J.
        • Phelps E.A.
        • et al.
        Recognition of facial emotion in nine individuals with bilateral amygdala damage.
        Neuropsychologia. 1999; 37: 1111-1117
        • Armony J.L.
        • LeDoux J.E.
        How the brain processes emotional information.
        Ann N Y Acad Sci. 1997; 821: 259-270
        • Whalen P.J.
        • Shin L.M.
        • McInerney S.C.
        • Fischer H.
        • Wright C.I.
        • Rauch S.L.
        A functional MRI study of human amygdala responses to facial expressions of fear versus anger.
        Emotion. 2001; 1: 70-83
        • Oppenheimer S.M.
        • Gelb A.
        • Girvin J.P.
        • Hachinski V.C.
        Cardiovascular effects of human insular cortex stimulation.
        Neurology. 1992; 42: 1727-1732
        • Britton J.C.
        • Phan K.L.
        • Taylor S.F.
        • Welsh R.C.
        • Berridge K.C.
        • Liberzon I.
        Neural correlates of social and nonsocial emotions: An fMRI study.
        Neuroimage. 2006; 31: 397-409
        • Stein M.B.
        • Simmons A.N.
        • Feinstein J.S.
        • Paulus M.P.
        Increased amygdala and insula activation during emotion processing in anxiety-prone subjects.
        Am J Psychiatry. 2007; 164: 318-327
        • Simmons A.N.
        • Paulus M.P.
        • Thorp S.R.
        • Matthews S.C.
        • Norman S.B.
        • Stein M.B.
        Functional activation and neural networks in women with posttraumatic stress disorder related to intimate partner violence.
        Biol Psychiatry. 2008; 64: 681-690
        • Phan K.L.
        • Taylor S.F.
        • Welsh R.C.
        • Ho S.H.
        • Britton J.C.
        • Liberzon I.
        Neural correlates of individual ratings of emotional salience: A trial-related fMRI study.
        Neuroimage. 2004; 21: 768-780
        • Schneider F.
        • Grodd W.
        • Weiss U.
        • Klose U.
        • Mayer K.R.
        • Nagele T.
        • Gur R.C.
        Functional MRI reveals left amygdala activation during emotion.
        Psychiatry Res. 1997; 76: 75-82
        • Carre J.M.
        • Fisher P.M.
        • Manuck S.B.
        • Hariri A.R.
        Interaction between trait anxiety and trait anger predict amygdala reactivity to angry facial expressions in men but not women.
        Soc Cogn Affect Neurosci. 2012; 7: 213-221
        • Ewbank M.P.
        • Fox E.
        • Calder A.J.
        The interaction between gaze and facial expression in the amygdala and extended amygdala is modulated by anxiety.
        Front Hum Neurosci. 2010; 4: 56
        • Dyck M.
        • Loughead J.
        • Kellermann T.
        • Boers F.
        • Gur R.C.
        • Mathiak K.
        Cognitive versus automatic mechanisms of mood induction differentially activate left and right amygdala.
        Neuroimage. 2011; 54: 2503-2513
        • Kanske P.
        • Heissler J.
        • Schonfelder S.
        • Bongers A.
        • Wessa M.
        How to regulate emotion? Neural networks for reappraisal and distraction.
        Cereb Cortex. 2011; 21: 1379-1388
        • Phan K.L.
        • Taylor S.F.
        • Welsh R.C.
        • Decker L.R.
        • Noll D.C.
        • Nichols T.E.
        • et al.
        Activation of the medial prefrontal cortex and extended amygdala by individual ratings of emotional arousal: A fMRI study.
        Biol Psychiatry. 2003; 53: 211-215
        • Taylor S.F.
        • Phan K.L.
        • Decker L.R.
        • Liberzon I.
        Subjective rating of emotionally salient stimuli modulates neural activity.
        Neuroimage. 2003; 18: 650-659
        • Liberzon I.
        • Taylor S.F.
        • Fig L.M.
        • Decker L.R.
        • Koeppe R.A.
        • Minoshima S.
        Limbic activation and psychophysiologic responses to aversive visual stimuli. Interaction with cognitive task.
        Neuropsychopharmacology. 2000; 23: 508-516
        • Lieberman M.D.
        • Inagaki T.K.
        • Tabibnia G.
        • Crockett M.J.
        Subjective responses to emotional stimuli during labeling, reappraisal, and distraction.
        Emotion. 2011; 11: 468-480
        • Tabibnia G.
        • Lieberman M.D.
        • Craske M.G.
        The lasting effect of words on feelings: Words may facilitate exposure effects to threatening images.
        Emotion. 2008; 8: 307-317
        • Mechias M.L.
        • Etkin A.
        • Kalisch R.
        A meta-analysis of instructed fear studies: Implications for conscious appraisal of threat.
        Neuroimage. 2010; 49: 1760-1768
        • Ghashghaei H.T.
        • Hilgetag C.C.
        • Barbas H.
        Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala.
        Neuroimage. 2007; 34: 905-923
        • Bracht T.
        • Tuscher O.
        • Schnell S.
        • Kreher B.
        • Rusch N.
        • Glauche V.
        • et al.
        Extraction of prefronto-amygdalar pathways by combining probability maps.
        Psychiatry Res. 2009; 174: 217-222
        • Robinson J.L.
        • Laird A.R.
        • Glahn D.C.
        • Lovallo W.R.
        • Fox P.T.
        Metaanalytic connectivity modeling: Delineating the functional connectivity of the human amygdala.
        Hum Brain Mapp. 2010; 31: 173-184
        • Ochsner K.N.
        • Gross J.J.
        The cognitive control of emotion.
        Trends Cogn Sci. 2005; 9: 242-249
        • Banks S.J.
        • Eddy K.T.
        • Angstadt M.
        • Nathan P.J.
        • Phan K.L.
        Amygdala-frontal connectivity during emotion regulation.
        Soc Cogn Affect Neurosci. 2007; 2: 303-312
        • Lee H.
        • Heller A.S.
        • van Reekum C.M.
        • Nelson B.
        • Davidson R.J.
        Amygdala-prefrontal coupling underlies individual differences in emotion regulation.
        Neuroimage. 2012; 62: 1575-1581
        • Etkin A.
        • Wager T.D.
        Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia.
        Am J Psychiatry. 2007; 164: 1476-1488
        • Wang J.M.
        • Johnston P.B.
        • Ball B.G.
        • Brinton R.D.
        The neurosteroid allopregnanolone promotes proliferation of rodent and human neural progenitor cells and regulates cell-cycle gene and protein expression.
        J Neurosci. 2005; 25: 4706-4718
        • Ghoumari A.M.
        • Ibanez C.
        • El-Etr M.
        • Leclerc P.
        • Eychenne B.
        • O'Malley B.W.
        • et al.
        Progesterone and its metabolites increase myelin basic protein expression in organotypic slice cultures of rat cerebellum.
        J Neurochem. 2003; 86: 848-859
        • Mellon S.H.
        • Gong W.
        • Schonemann M.D.
        Endogenous and synthetic neurosteroids in treatment of Niemann-Pick Type C disease.
        Brain Res Rev. 2008; 57: 410-420
        • Djebaili M.
        • Guo Q.
        • Pettus E.H.
        • Hoffman S.W.
        • Stein D.G.
        The neurosteroids progesterone and allopregnanolone reduce cell death, gliosis, and functional deficits after traumatic brain injury in rats.
        J Neurotrauma. 2005; 22: 106-118
        • Sayeed I.
        • Guo Q.
        • Hoffman S.W.
        • Stein D.G.
        Allopregnanolone, a progesterone metabolite, is more effective than progesterone in reducing cortical infarct volume after transient middle cerebral artery occlusion.
        Ann Emerg Med. 2006; 47: 381-389
        • Griffin L.D.
        • Gong W.
        • Verot L.
        • Mellon S.H.
        Niemann-Pick type C disease involves disrupted neurosteroidogenesis and responds to allopregnanolone.
        Nat Med. 2004; 10: 704-711
        • George M.S.
        • Guidotti A.
        • Rubinow D.
        • Pan B.
        • Mikalauskas K.
        • Post R.M.
        CSF neuroactive steroids in affective disorders: Pregnenolone, progesterone, and DBI.
        Biol Psychiatry. 1994; 35: 775-780
        • Semeniuk T.
        • Jhangri G.S.
        • Le Melledo J.M.
        Neuroactive steroid levels in patients with generalized anxiety disorder.
        J Neuropsychiatry Clin Neurosci. 2001; 13: 396-398
        • Heydari B.
        • Le Melledo J.M.
        Low pregnenolone sulphate plasma concentrations in patients with generalized social phobia.
        Psychol Med. 2002; 32: 929-933
        • Bicikova M.
        • Tallova J.
        • Hill M.
        • Krausova Z.
        • Hampl R.
        Serum concentrations of some neuroactive steroids in women suffering from mixed anxiety-depressive disorder.
        Neurochem Res. 2000; 25: 1623-1627