Archival Report| Volume 73, ISSUE 10, P1024-1034, May 15, 2013

Download started.


Social Isolation Exacerbates Schizophrenia-Like Phenotypes via Oxidative Stress in Cortical Interneurons

  • Zhihong Jiang
    Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
    Search for articles by this author
  • Gregory R. Rompala
    Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
    Search for articles by this author
  • Shuqin Zhang
    Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
    Search for articles by this author
  • Rita M. Cowell
    Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
    Search for articles by this author
  • Kazu Nakazawa
    Address correspondence to Kazu Nakazawa, M.D., Ph.D., National Institute of Mental Health, 35 Convent Drive, Building 35, Room 1C915, Bethesda, MD 20892-3710
    Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
    Search for articles by this author


      Our previous studies indicated that N-methyl-D-aspartate receptor (NMDAR) deletion from a subset of corticolimbic interneurons in the mouse brain during early postnatal development is sufficient to trigger several behavioral and pathophysiological features resembling the symptoms of human schizophrenia. Interestingly, many of these behavioral phenotypes are exacerbated by social isolation stress. However, the mechanisms underlying the exacerbating effects of social isolation are unclear.


      With γ-aminobutyric acid-ergic interneuron-specific NMDAR hypofunction mouse model (Ppp1r2-Cre/fGluN1 knockout [KO] mice), we investigated whether oxidative stress is implicated in the social isolation-induced exacerbation of schizophrenia-like phenotypes and further explored the underlying mechanism of elevated oxidative stress in KO mice.


      The reactive oxygen species (ROS) level in the cortex of group-housed KO mice was normal at 8 weeks although increased at 16 weeks old. Postweaning social isolation (PWSI) augmented the ROS levels in KO mice at both ages, which was accompanied by the onset of behavioral phenotype. Chronic treatment with apocynin, an ROS scavenger, abolished markers of oxidative stress and partially alleviated schizophrenia-like behavioral phenotypes in KO mice. Markers of oxidative stress after PWSI were especially prominent in cortical parvalbumin (PV)-positive interneurons. The vulnerability of PV interneurons to oxidative stress was associated with downregulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a master regulator of mitochondrial energy metabolism and antioxidation.


      These results suggest that a PWSI-mediated impairment in antioxidant defense mechanisms, presumably mediated by PGC-1α downregulation in the NMDAR-deleted PV-positive interneurons, results in oxidative stress, which, in turn, might contribute to exacerbation of schizophrenia-like behavioral phenotypes.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Fulker D.W.
        A biometrical genetic approach to intelligence and schizophrenia.
        Soc Biol. 1973; 20: 266-275
        • Cardno A.G.
        • Gottesman I.I.
        Twin studies of schizophrenia: From bow-and-arrow concordances to star wars Mx and functional genomics.
        Am J Med Genet. 2000; 97: 12-17
        • Veling W.
        • Susser E.
        Migration and psychotic disorders.
        Expert Rev Neurother. 2011; 11: 65-76
        • Schiavone S.
        • Sorce S.
        • Dubois-Dauphin M.
        • Jaquet V.
        • Colaianna M.
        • Zotti M.
        • et al.
        Involvement of NOX2 in the development of behavioral and pathologic alterations in isolated rats.
        Biol Psychiatry. 2009; 66: 384-392
        • Möller M.
        • Du Preez J.L.
        • Emsley R.
        • Harvey B.H.
        Isolation rearing-induced deficits in sensorimotor gating and social interaction in rats are related to cortico-striatal oxidative stress, and reversed by sub-chronic clozapine administration.
        Eur Neuropsychopharmacol. 2011; 21: 471-483
        • Do K.Q.
        • Cabungcal J.-H.
        • Frank A.
        • Steullet P.
        • Cuenod M.
        Redox dysregulation, neurodevelopment, and schizophrenia.
        Curr Opin Neurobiol. 2009; 19: 220-230
        • Yao J.K.
        • Keshavan M.S.
        Antioxidants, redox signaling, and pathophysiology in schizophrenia: An integrative view.
        Antioxid Redox Signal. 2011; 15: 2011-2035
        • Reddy R.
        • Sahebarao M.P.
        • Mukherjee S.
        • Murthy J.N.
        Enzymes of the antioxidant defense system in chronic schizophrenic patients.
        Biol Psychiatry. 1991; 30: 409-412
        • Mukerjee S.
        • Mahadik S.P.
        • Scheffer R.
        • Correnti E.E.
        • Kelkar H.
        Impaired antioxidant defense at the onset of psychosis.
        Schizophr Res. 1996; 19: 19-26
        • Coughlin J.M.
        • Ishizuka K.
        • Kano S.I.
        • Edwards J.A.
        • Seifuddin F.T.
        • Shimano M.A.
        • et al.
        Marked reduction of soluble superoxide dismutase-1 (SOD1) in cerebrospinal fluid of patients with recent-onset schizophrenia.
        Mol Psychiatry. 2013; 18: 10-11
        • Powell S.B.
        • Sejnowski T.J.
        • Behrens M.M.
        Behavioral and neurochemical consequences of cortical oxidative stress on parvalbumin-interneuron maturation in rodent models of schizophrenia.
        Neuropharmacology. 2012; 62: 1322-1331
        • Radonjić N.V.
        • Knezević I.D.
        • Vilimanovich U.
        • Kravić-Stevović T.
        • Marina L.V.
        • Nikolić T.
        • et al.
        Decreased glutathione levels and altered antioxidant defense in an animal model of schizophrenia: Long-term effects of perinatal phencyclidine administration.
        Neuropharmacology. 2010; 58: 739-745
        • Behrens M.M.
        • Ali S.S.
        • Dao D.N.
        • Lucero J.
        • Shekhtman G.
        • Quick K.L.
        • et al.
        Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase.
        Science. 2007; 318: 1645-1647
        • Zhang Y.
        • Behrens M.M.
        • Lisman J.E.
        Prolonged exposure to NMDAR antagonist suppresses inhibitory synaptic transmission in prefrontal cortex.
        J Neurophysiol. 2008; 100: 959-965
        • Belforte J.E.
        • Zsiros V.
        • Sklar E.R.
        • Jiang Z.
        • Yu G.
        • Li Y.
        • et al.
        Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes.
        Nat Neurosci. 2010; 13: 76-83
        • Dang M.T.
        • Yokoi F.
        • Yin H.H.
        • Lovinger D.M.
        • Wang Y.
        • Li Y.
        Disrupted motor learning and long-term synaptic plasticity in mice lacking NMDAR1 in the striatum.
        Proc Natl Acad Sci U S A. 2006; 103: 15254-15259
        • Harraz M.M.
        • Marden J.J.
        • Zhou W.
        • Zhang Y.
        • Williams A.
        • Sharov V.S.
        • et al.
        SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model.
        J Clin Invest. 2008; 118: 659-670
        • Heumüller S.
        • Wind S.
        • Barbosa-Sicard E.
        • Schmidt H.H.
        • Busse R.
        • Schröder K.
        • et al.
        Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant.
        Hypertension. 2008; 51: 211-217
        • Simons J.M.
        • Hart B.A.
        • Ip Vai Ching T.R.
        • Van D.H.
        • Labadie R.P.
        Metabolic activation of natural phenols into selective oxidative burst agonists by activated human neutrophils.
        Free Radic Biol Med. 1990; 8: 251-258
        • Tanahira C.
        • Higo S.
        • Watanabe K.
        • Tomioka R.
        • Ebihara S.
        • Kaneko T.
        • et al.
        Parvalbumin neurons in the forebrain as revealed by parvalbumin-Cre transgenic mice.
        Neurosci Res. 2009; 63: 213-223
        • Benov L.
        • Sztejnberg L.
        • Fridovich I.
        Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical.
        Free Radic Biol Med. 1998; 25: 826-831
        • Lin J.
        • Handschin C.
        • Spiegelman B.M.
        Metabolic control through the PGC-1 family of transcription coactivators.
        Cell Metab. 2005; 1: 361-370
        • St-Pierre J.
        • Drori S.
        • Uldry M.
        • Silvaggi J.M.
        • Rhee J.
        • Jäger S.
        • et al.
        Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators.
        Cell. 2006; 127: 397-408
        • Lucas E.K.
        • Markwardt S.J.
        • Gupta S.
        • Meador-Woodruff J.H.
        • Lin J.D.
        • Overstreet-Wadiche L.
        • et al.
        Parvalbumin deficiency and GABAergic dysfunction in mice lacking PGC-1α.
        J Neurosci. 2010; 30: 7227-7235
        • Soltesz I.
        • Deschênes M.
        Low- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia.
        J Neurophysiol. 1993; 70: 97-116
        • Klausberger T.
        • Magill P.J.
        • Márton L.F.
        • Roberts J.D.
        • Cobden P.M.
        • Buzsáki G.
        • et al.
        Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo.
        Nature. 2003; 421: 844-848
        • Hajos N.
        • Palhalmi J.
        • Mann E.O.
        • Nemeth B.
        • Paulsen O.
        • Freund T.F.
        Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro.
        J Neurosci. 2004; 24: 9127-9137
        • Cunningham M.O.
        • Hunt J.
        • Middleton S.
        • LeBeau F.E.
        • Gillies M.J.
        • Davies C.H.
        • et al.
        Region-specific reduction in entorhinal gamma oscillations and parvalbumin-immunoreactive neurons in animal models of psychiatric illness.
        J Neurosci. 2006; 26: 2767-2776
        • Gulyás A.I.
        • Buzsáki G.
        • Freund T.F.
        • Hirase H.
        Populations of hippocampal inhibitory neurons express different levels of cytochrome c.
        Eur J Neurosci. 2006; 23: 2581-2594
        • Czeh B.
        • Simon M.
        • van der Hart M.G.
        • Schmelting B.
        • Hesselink M.B.
        • Fuchs E.
        Chronic stress decreases the number of parvalbumin-immunoreactive interneurons in the hippocampus: prevention by treatment with a substance P receptor (NK1) antagonist.
        Neuropsychopharmacology. 2005; 30: 67-79
        • Hu W.
        • Zhang M.
        • Czéh B.
        • Flügge G.
        • Zhang W.
        Stress impairs GABAergic network function in the hippocampus by activating nongenomic glucocorticoid receptors and affecting the integrity of the parvalbumin-expressing neuronal network.
        Neuropsychopharmacology. 2010; 35: 1693-1707
        • Cowell R.M.
        • Blake K.R.
        • Russell J.W.
        Localization of the transcriptional coactivator PGC-1α to GABAergic neurons during maturation of the rat brain.
        J Comp Neurol. 2007; 502: 1-18
        • Meng H.
        • Liang H.L.
        • Wong-Riley M.
        Quantitative immuno-electron microscopic analysis of depolarization-induced expression of PGC-1α in cultured rat visual cortical neurons.
        Brain Res. 2007; 1175: 10-16
        • Luo Y.
        • Zhu W.
        • Jia J.
        • Zhang C.
        • Xu Y.
        NMDA receptor dependent PGC-1α up-regulation protects the cortical neuron against oxygen-glucose deprivation/reperfusion injury.
        J Mol Neurosci. 2009; 39: 262-268
        • Liang H.L.
        • Dhar S.S.
        • Wong-Riley M.T.
        p38 mitogen-activated protein kinase and calcium channels mediate signaling in depolarization-induced activation of peroxisome proliferator-activated receptor gamma coactivator-1α in neurons.
        J Neurosci Res. 2010; 88: 640-649
        • Liang H.L.
        • Wong-Riley M.T.
        Activity-dependent regulation of nuclear respiratory factor-1, nuclear respiratory factor-2, and peroxisome proliferatoractivated receptor gamma coactivator-1 in neurons.
        Neuroreport. 2006; 17: 401-405
        • Patterson P.H.
        Immune involvement in schizophrenia and autism: Etiology, pathology and animal models.
        Behav Brain Res. 2009; 204: 313-321
        • Meyer U.
        Developmental neuroinflammation and schizophrenia [published online ahead of print November 15].
        Prog Neuropsychopharmacol Biol Psychiatry. 2011; (doi:10.1016/j.pnpbp.2011.11.003)
        • Bayer T.A.
        • Buslei R.
        • Havas L.
        • Falkai P.
        Evidence for activation of microglia in patients with psychiatric illnesses.
        Neurosci Lett. 1999; 271: 126-128
        • Radewicz K.
        • Garey L.J.
        • Gentleman S.M.
        • Reynolds R.
        Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics.
        J Neuropathol Exp Neurol. 2000; 59: 137-150
        • Steiner J.
        • Mawrin C.
        • Ziegeler A.
        • Bielau H.
        • Ullrich O.
        • Bernstein H.G.
        • et al.
        Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization.
        Acta Neuropathol. 2006; 112: 305-316
        • Steiner J.
        • Bielau H.
        • Brisch R.
        • Danos P.
        • Ullrich O.
        • Mawrin C.
        • et al.
        Immunological aspects in the neurobiology of suicide: Elevated microglial density in schizophrenia and depression is associated with suicide.
        J Psychiatr Res. 2008; 42: 151-157
        • van Berckel B.N.
        • Bossong M.G.
        • Boellaard R.
        • Kloet R.
        • Schuitemaker A.
        • Caspers E.
        • et al.
        Microglia activation in recent-onset schizophrenia: A quantitative (R)-[11C]PK11195 positron emission tomography study.
        Biol Psychiatry. 2008; 64: 820-822
        • Behrens M.M.
        • Ali S.S.
        • Dugan L.L.
        Interleukin-6 mediates the increase in NADPH-oxidase in the ketamine model of schizophrenia.
        J Neurosci. 2008; 28: 13957-13966
        • Sorce S.
        • Schiavone S.
        • Tucci P.
        • Colaianna M.
        • Jaquet V.
        • Cuomo V.
        • et al.
        The NADPH oxidase NOX2 controls glutamate release: A novel mechanism involved in psychosis-like ketamine responses.
        J Neurosci. 2010; 30: 11317-11325
        • Takac I.
        • Schröder K.
        • Zhang L.
        • Lardy B.
        • Anilkumar N.
        • Lambeth J.D.
        • et al.
        The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4.
        J Biol Chem. 2011; 286: 13304-13313
        • Winterbourn C.C.
        Reconciling the chemistry and biology of reactive oxygen species.
        Nat Chem Biol. 2008; 4: 278-286
        • Brown A.S.
        The environment and susceptibility to schizophrenia.
        Prog Neurobiol. 2011; 93: 23-58
        • Blackwood D.H.
        • He L.
        • Morris S.W.
        • McLean A.
        • Whitton C.
        • Thomson M.
        • et al.
        A locus for bipolar affective disorder on chromosome 4p.
        Nat Genet. 1996; 12: 427-430
        • Christoforou A.
        • Hellard S.L.
        • Thomson P.A.
        • Morris S.W.
        • Tenesa A.
        • Pickard B.S.
        • et al.
        Association analysis of the chromosome 4p15-p16 candidate region for bipolar and schizophrenia.
        Mol Psychiatry. 2007; 12: 1011-1025
        • Christoforou A.
        • McGhee K.A.
        • Morris S.W.
        • Thomson P.A.
        • Anderson S.
        • McLean A.
        • et al.
        Convergence of linkage, association and GWAS findings for a candidate region for bipolar disorder and schizophrenia on chromosome 4p.
        Mol Psychiatry. 2010; 16: 240-242
        • Hsiao Y.H.
        • Chen P.S.
        • Chen S.H.
        • Gean P.W.
        The involvement of Cdk5 activator p35 in social isolation-triggered onset of early Alzheimer’s disease-related cognitive deficit in the transgenic mice.
        Neuropsychopharmacology. 2011; 36: 1848-1858
        • Hermes G.
        • Li N.
        • Duman C.
        • Duman R.
        Post-weaning chronic social isolation produces profound behavioral dysregulation with decreases in prefrontal cortex synaptic-associated protein expression in female rats.
        Physiol Behav. 2011; 104: 354-359
        • Fone K.C.F.
        • Porkess M.V.
        Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders.
        Neurosci Biobehav Rev. 2008; 32: 1087-1102
        • Nuechterlein K.H.
        • Dawson M.E.
        A heuristic vulnerability/stress model of schizophrenic episodes.
        Schizophr Bull. 1984; 10: 300-312
        • Bayer T.A.
        • Falkai P.
        • Maier W.
        Genetic and non-genetic vulnerability factors in schizophrenia: The basis of the “two hit hypothesis”.
        J Psychiatr Res. 1999; 33: 543-548