Advertisement

The Electroretinogram as a Biomarker of Central Dopamine and Serotonin: Potential Relevance to Psychiatric Disorders

  • Joëlle Lavoie
    Affiliations
    Department of Psychiatry and Neurosciences, Quebec City, Quebec, Canada

    Department of Ophthalmology and Otorhinolaryngology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada

    Centre de recherche de l’Institut universitaire en santé mentale de Québec, Quebec City, Quebec, Canada
    Search for articles by this author
  • Placido Illiano
    Affiliations
    Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
    Search for articles by this author
  • Tatyana D. Sotnikova
    Affiliations
    Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
    Search for articles by this author
  • Raul R. Gainetdinov
    Affiliations
    Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
    Search for articles by this author
  • Jean-Martin Beaulieu
    Affiliations
    Department of Psychiatry and Neurosciences, Quebec City, Quebec, Canada

    Centre de recherche de l’Institut universitaire en santé mentale de Québec, Quebec City, Quebec, Canada
    Search for articles by this author
  • Marc Hébert
    Correspondence
    Address correspondence to Marc Hébert, Ph.D., Centre de recherche de l’Institut universitaire en santé mentale de Québec, 2601, chemin de la Canardière, F-4500, Quebec City, Quebec, Canada G1J 2G3
    Affiliations
    Department of Ophthalmology and Otorhinolaryngology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada

    Centre de recherche de l’Institut universitaire en santé mentale de Québec, Quebec City, Quebec, Canada
    Search for articles by this author

      Background

      Dysfunctions in brain dopamine and serotonin neurotransmission are believed to be involved in the etiology of psychiatric disorders, and electroretinogram (ERG) anomalies have been reported in psychiatric patients. The goal of this study was to evaluate whether ERG anomalies could result from central dopamine or serotonin dysfunctions or from changes in the retinal bioavailability of these neurotransmitters.

      Method

      Photopic and scotopic ERGs were recorded in R439H tryptophan hydroxylase 2 knockin (Tph2-KI) mice that have an approximately 80% decrease in brain serotonin and dopamine transporter knockout (DAT-KO) mice showing a fivefold increase in brain extracellular dopamine. Dopamine and serotonin retinal and striatal tissue content were also measured. The role of dopamine D1 receptors (D1R) and D2 receptors (D2R) in the ERG responses was evaluated in D1R-KO and D2R-KO mice.

      Results

      An increase in photopic b-wave implicit time was observed in Tph2-KI mice (wildtype = 24.25 msec, KI = 25.22 msec; p = .011). The DAT-KO mice showed a decrease in rod sensitivity (wildtype =−1.97 log units, KO =−1.81 log units; p = .014). In contrast to remarkable alterations in brain levels, no changes in dopamine and serotonin retinal content were found in DAT-KO and Tph2-KI mice, respectively. The D1R-KO mice showed anomalies in photopic and scotopic maximal amplitude, whereas D2R-KO mice showed higher oscillatory potentials relative contribution to the b-wave amplitude.

      Conclusion

      Alterations in central dopamine and serotonin neurotransmission can affect the ERG responses. The ERG anomalies reported in psychiatric disorders might serve as biomarkers of central monoaminergic dysfunction, thus promoting ERG measurements as a useful tool in psychiatric research.

      Key Words

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Balogh Z.
        • Benedek G.
        • Keri S.
        Retinal dysfunctions in schizophrenia.
        Prog Neuropsychopharmacol Biol Psychiatry. 2008; 32: 297-300
        • Warner R.
        • Laugharne J.
        • Peet M.
        • Brown L.
        • Rogers N.
        Retinal function as a marker for cell membrane omega-3 fatty acid depletion in schizophrenia: A pilot study.
        Biol Psychiatry. 1999; 45: 1138-1142
        • Hébert M.
        • Dumont M.
        • Lachapelle P.
        Electrophysiological evidence suggesting a seasonal modulation of retinal sensitivity in subsyndromal winter depression.
        J Affect Disord. 2002; 68: 191-202
        • Hébert M.
        • Beattie C.W.
        • Tam E.M.
        • Yatham L.N.
        • Lam R.W.
        Electroretinography in patients with winter seasonal affective disorder.
        Psychiatry Res. 2004; 127: 27-34
        • Lavoie M.P.
        • Lam R.W.
        • Bouchard G.
        • Sasseville A.
        • Charron M.C.
        • Gagne A.M.
        • et al.
        Evidence of a biological effect of light therapy on the retina of patients with seasonal affective disorder.
        Biol Psychiatry. 2009; 66: 253-258
        • Lam R.W.
        • Beattie C.W.
        • Buchanan A.
        • Mador J.A.
        Electroretinography in seasonal affective disorder.
        Psychiatry Res. 1992; 43: 55-63
        • Ritvo E.R.
        • Creel D.
        • Realmuto G.
        • Crandall A.S.
        • Freeman B.J.
        • Bateman J.B.
        • et al.
        Electroretinograms in autism: A pilot study of b-wave amplitudes.
        Am J Psychiatry. 1988; 145: 229-232
        • Jaffe M.J.
        • Bruno G.
        • Campbell G.
        • Lavine R.A.
        • Karson C.N.
        • Weinberger D.R.
        Ganzfeld electroretinographic findings in parkinsonism: Untreated patients and the effect of levodopa intravenous infusion.
        J Neurol Neurosurg Psychiatry. 1987; 50: 847-852
        • Hebert M.
        • Gagne A.M.
        • Paradis M.E.
        • Jomphe V.
        • Roy M.A.
        • Merette C.
        • et al.
        Retinal response to light in young nonaffected offspring at high genetic risk of neuropsychiatric brain disorders.
        Biol Psychiatry. 2010; 67: 270-274
        • Reis R.A.
        • Ventura A.L.
        • Kubrusly R.C.
        • de Mello M.C.
        • de Mello F.G.
        Dopaminergic signaling in the developing retina.
        Brain Res Rev. 2007; 54: 181-188
        • Witkovsky P.
        Dopamine and retinal function.
        Doc Ophthalmol. 2004; 108: 17-40
        • Beaulieu J.M.
        • Gainetdinov R.R.
        The physiology, signaling, and pharmacology of dopamine receptors.
        Pharmacol Rev. 2011; 63: 182-217
        • Nguyen-Legros J.
        • Simon A.
        • Caille I.
        • Bloch B.
        Immunocytochemical localization of dopamine D1 receptors in the retina of mammals.
        Vis Neurosci. 1997; 14: 545-551
        • Doi M.
        • Yujnovsky I.
        • Hirayama J.
        • Malerba M.
        • Tirotta E.
        • Sassone-Corsi P.
        • et al.
        Impaired light masking in dopamine D2 receptor-null mice.
        Nat Neurosci. 2006; 9: 732-734
        • Kuhar M.J.
        • Sanchez-Roa P.M.
        • Wong D.F.
        • Dannals R.F.
        • Grigoriadis D.E.
        • Lew R.
        • et al.
        Dopamine transporter: biochemistry, pharmacology and imaging.
        Eur Neurol. 1990; 30: 15-20
        • Gainetdinov R.R.
        • Jones S.R.
        • Caron M.G.
        Functional hyperdopaminergia in dopamine transporter knock-out mice.
        Biol Psychiatry. 1999; 46: 303-311
        • Jones S.R.
        • Gainetdinov R.R.
        • Jaber M.
        • Giros B.
        • Wightman R.M.
        • Caron M.G.
        Profound neuronal plasticity in response to inactivation of the dopamine transporter.
        Proc Natl Acad Sci U S A. 1998; 95: 4029-4034
        • Gastinger M.J.
        • Tian N.
        • Horvath T.
        • Marshak D.W.
        Retinopetal axons in mammals: Emphasis on histamine and serotonin.
        Curr Eye Res. 2006; 31: 655-667
        • Zhang X.
        • Beaulieu J.M.
        • Sotnikova T.D.
        • Gainetdinov R.R.
        • Caron M.G.
        Tryptophan hydroxylase-2 controls brain serotonin synthesis.
        Science. 2004; 305: 217
        • Walther D.J.
        • Peter J.U.
        • Bashammakh S.
        • Hortnagl H.
        • Voits M.
        • Fink H.
        • et al.
        Synthesis of serotonin by a second tryptophan hydroxylase isoform.
        Science. 2003; 299: 76
        • Liang J.
        • Wessel 3rd, J.H.
        • Iuvone P.M.
        • Tosini G.
        • Fukuhara C.
        Diurnal rhythms of tryptophan hydroxylase 1 and 2 mRNA expression in the rat retina.
        Neuroreport. 2004; 15: 1497-1500
        • Zhang X.
        • Gainetdinov R.R.
        • Beaulieu J.M.
        • Sotnikova T.D.
        • Burch L.H.
        • Williams R.B.
        • et al.
        Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression.
        Neuron. 2005; 45: 11-16
        • Beaulieu J.M.
        • Zhang X.
        • Rodriguiz R.M.
        • Sotnikova T.D.
        • Cools M.J.
        • Wetsel W.C.
        • et al.
        Role of GSK3 beta in behavioral abnormalities induced by serotonin deficiency.
        Proc Natl Acad Sci U S A. 2008; 105: 1333-1338
        • Jacobsen J.P.
        • Siesser W.B.
        • Sachs B.D.
        • Peterson S.
        • Cools M.J.
        • Setola V.
        • et al.
        Deficient serotonin neurotransmission and depression-like serotonin biomarker alterations in tryptophan hydroxylase 2 (Tph2) loss-of-function mice.
        Mol Psychiatry. 2012; 17: 694-704
        • Huppe-Gourgues F.
        • Coude G.
        • Lachapelle P.
        • Casanova C.
        Effects of the intravitreal administration of dopaminergic ligands on the b-wave amplitude of the rabbit electroretinogram.
        Vision Res. 2005; 45: 137-145
        • Porciatti V.
        • Alesci R.
        • Bagnoli P.
        • Signorini G.
        • Raffaelli A.
        Serotonin depletion modifies the pigeon electroretinogram.
        Doc Ophthalmol. 1989; 72: 93-100
        • Nakatsuka K.
        • Hamasaki D.I.
        Destruction of the indoleamine-accumulating amacrine cells alters the ERG of rabbits.
        Invest Ophthalmol Vis Sci. 1985; 26: 1109-1116
        • Skrandies W.
        • Wassle H.
        Dopamine and serotonin in cat retina: Electroretinography and histology.
        Exp Brain Res. 1988; 71: 231-240
        • Holopigian K.
        • Clewner L.
        • Seiple W.
        • Kupersmith M.J.
        The effects of dopamine blockade on the human flash electroretinogram.
        Doc Ophthalmol. 1994; 86: 1-10
        • Schneider T.
        • Zrenner E.
        Effects of D-1 and D-2 dopamine antagonists on ERG and optic nerve response of the cat.
        Exp Eye Res. 1991; 52: 425-430
        • Giros B.
        • Jaber M.
        • Jones S.R.
        • Wightman R.M.
        • Caron M.G.
        Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter.
        Nature. 1996; 379: 606-612
        • Drago J.
        • Gerfen C.R.
        • Lachowicz J.E.
        • Steiner H.
        • Hollon T.R.
        • Love P.E.
        • et al.
        Altered striatal function in a mutant mouse lacking D1A dopamine receptors.
        Proc Natl Acad Sci U S A. 1994; 91: 12564-12568
        • Kelly M.A.
        • Rubinstein M.
        • Asa S.L.
        • Zhang G.
        • Saez C.
        • Bunzow J.R.
        • et al.
        Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice.
        Neuron. 1997; 19: 103-113
        • Wachtmeister L.
        Oscillatory potentials in the retina: What do they reveal.
        Prog Retin Eye Res. 1998; 17: 485-521
        • Hébert M.
        • Lachapelle P.
        • Dumont M.
        Reproducibility of electroretinograms recorded with DTL electrodes.
        Doc Ophthalmol. 1995; 91: 333-342
        • Gainetdinov R.R.
        • Wetsel W.C.
        • Jones S.R.
        • Levin E.D.
        • Jaber M.
        • Caron M.G.
        Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity.
        Science. 1999; 283: 397-401
        • Schechter G.
        • Hock P.
        • Rodgers K.
        • Pfefferbaum A.
        • Marmor M.F.
        • Berger P.A.
        Electroretinographic assessment in schizophrenia.
        Electroencephalogr Clin Neurophysiol Suppl. 1987; 40: 746-751
        • Marmor M.F.
        • Hock P.
        • Schechter G.
        • Pfefferbaum A.
        • Berger P.A.
        • Maurice R.
        Oscillatory potentials as a marker for dopaminergic disease.
        Doc Ophthalmol. 1988; 69: 255-261
        • Westrin A.
        • Lam R.W.
        Seasonal affective disorder: A clinical update.
        Ann Clin Psychiatry. 2007; 19: 239-246
        • Praschak-Rieder N.
        • Willeit M.
        • Wilson A.A.
        • Houle S.
        • Meyer J.H.
        Seasonal variation in human brain serotonin transporter binding.
        Arch Gen Psychiatry. 2008; 65: 1072-1078
        • Willeit M.
        • Sitte H.H.
        • Thierry N.
        • Michalek K.
        • Praschak-Rieder N.
        • Zill P.
        • et al.
        Enhanced serotonin transporter function during depression in seasonal affective disorder.
        Neuropsychopharmacology. 2008; 33: 1503-1513
        • Neumeister A.
        • Willeit M.
        • Praschak-Rieder N.
        • Asenbaum S.
        • Stastny J.
        • Hilger E.
        • et al.
        Dopamine transporter availability in symptomatic depressed patients with seasonal affective disorder and healthy controls.
        Psychol Med. 2001; 31: 1467-1473
        • Gagne A.M.
        • Bouchard G.
        • Tremblay P.
        • Sasseville A.
        • Hebert M.
        [When a season means depression].
        Med Sci (Paris). 2010; 26: 79-82
        • Oren D.A.
        • Levendosky A.A.
        • Kasper S.
        • Duncan C.C.
        • Rosenthal N.E.
        Circadian profiles of cortisol, prolactin, and thyrotropin in seasonal affective disorder.
        Biol Psychiatry. 1996; 39: 157-170
        • Depue R.A.
        • Arbisi P.
        • Krauss S.
        • Iacono W.G.
        • Leon A.
        • Muir R.
        • et al.
        Seasonal independence of low prolactin concentration and high spontaneous eye blink rates in unipolar and bipolar II seasonal affective disorder.
        Arch Gen Psychiatry. 1990; 47: 356-364
        • Karson C.N.
        Spontaneous eye-blink rates and dopaminergic systems.
        Brain. 1983; 106: 643-653
        • Depue R.A.
        • Arbisi P.
        • Spoont M.R.
        • Krauss S.
        • Leon A.
        • Ainsworth B.
        Seasonal and mood independence of low basal prolactin secretion in premenopausal women with seasonal affective disorder.
        Am J Psychiatry. 1989; 146: 989-995
        • Herrmann R.
        • Heflin S.J.
        • Hammond T.
        • Lee B.
        • Wang J.
        • Gainetdinov R.R.
        • et al.
        Rod vision is controlled by dopamine-dependent sensitization of rod bipolar cells by GABA.
        Neuron. 2011; 72: 101-110
        • Goldman-Rakic P.S.
        • Castner S.A.
        • Svensson T.H.
        • Siever L.J.
        • Williams G.V.
        Targeting the dopamine D1 receptor in schizophrenia: Insights for cognitive dysfunction.
        Psychopharmacology (Berl). 2004; 174: 3-16
        • Maziade M.
        • Rouleau N.
        • Merette C.
        • Cellard C.
        • Battaglia M.
        • Marino C.
        • et al.
        Verbal and visual memory impairments among young offspring and healthy adult relatives of patients with schizophrenia and bipolar disorder: Selective generational patterns indicate different developmental trajectories.
        Schizophr Bull. 2011; 37: 1218-1228
        • Citron M.C.
        • Erinoff L.
        • Rickman D.W.
        • Brecha N.C.
        Modification of electroretinograms in dopamine-depleted retinas.
        Brain Res. 1985; 345: 186-191
        • Roth B.L.
        • Sheffler D.J.
        • Kroeze W.K.
        Magic shotguns versus magic bullets: Selectively non-selective drugs for mood disorders and schizophrenia.
        Nat Rev Drug Discov. 2004; 3: 353-359
        • Eells J.B.
        The control of dopamine neuron development, function and survival: Insights from transgenic mice and the relevance to human disease.
        Curr Med Chem. 2003; 10: 857-870
        • Bosse R.
        • Fumagalli F.
        • Jaber M.
        • Giros B.
        • Gainetdinov R.R.
        • Wetsel W.C.
        • et al.
        Anterior pituitary hypoplasia and dwarfism in mice lacking the dopamine transporter.
        Neuron. 1997; 19: 127-138